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PREFACE

This book has grown out of the authors’ joint work extending over ten years
now. We began by formalising the picture of the structure and comparison of
major branches of genetic theories as drawn in Dawe’s dissertation (Dawe,1982).
First results were published in two articles (Balzer & Dawe,1986a,b). There was
extensive demand for preprints following this publication, which we interpreted
as indicating significant interest among geneticists and other scientists in the
foundations of this rapidly developing discipline. So we decided to go further,
and work out a detailed manuscript. Since 1990, copies of our manuscript
circulated among colleagues interested in the foundations of genetics. When we
recognized that our work began to be taken up in other publications we thought
it should officially be published.

The book we present here is a foundational work. We want to provide clear
and precise conceptual models for the most important branches of genetics. The
value of such work is in unification and simplification. By this alone, no new
problems in practical genetics are solved. Neither do we analyse in detail any
practical examples from the current frontiers of genetics. However, scientific
value cannot be assessed merely by virtue of immediate applicability. History
abounds with examples of important theoretical advances which were of little,
if any, contemporary value. Foundational work takes some time to penetrate
into scientific practise and teaching, but is no less essential for that.

One point of making precise models is to make the field accessible to com-
puters. Our models are of this kind. Genetics already experiences substantial
application of computers at the molecular level where the configurations of com-
plex molecules are modelled, and first steps of AI methods are seen, for instance
in the MOLGEN programme (Stefik,1981a,b). It is not difficult to transform
the axioms which characterise our models into programs in high level computer
languages like LISP and PROLOG. In fact, in (Dawe & Dawe, 1994), some first
pieces of code are given, based on our models. Such programs may be taken as
the kernel for comprehensive expert systems. By adding special features charac-
teristic for special and possibly complicated applications, a somewhat intelligent
tool becomes available. Indeed, at one time we had contemplated including sub-
stantial parts of programs, but this is a matter beyond our present scope, and
one which we shall address on another occasion.

A second point of being precise is to make the field more accessible to be-
ginners. The textbook tradition in genetics, beginning with (Sinnot & Dunn,
1925) focusses on the explanation of various important assumptions, principles
or hypotheses, and their application to conrete, ‘textbook’ cases. This is an effi-
cient way to further the novice’s ability to produce certain standard solutions to
standard problems. Textbooks are written this way in all disciplines. However,
problem solving is just one important scientific activity, finding new hypotheses
is another. For the latter it is necessary to have a firm command of the precise
form of the primitives. So the book should be profitable for students of genetics
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as a companion to ‘ordinary’ textbooks.
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Chapter 1

The Unity of Genetics

Genetics is both the study of the hereditary transmission of traits as well as
the study of the underlying mechanisms responsible for those traits. As a mat-
ter of historical fact, the study of the hereditary transmission preceded that
of the underlying mechanisms. In the 19th century, the first regularities were
observed in the transmission of characters distinguished in plants. Mendel’s
famous experiments may be regarded as marking the origin of genetics as a
science. The basic method of observing, counting, and systematizing the occur-
rences of various characters, and tracing them through various generations has
been steadily developed and refined. It is now firmly established and recently
gained new impetus from the studies of pedigrees. According to this approach
the characters and their observed expressions are taken as given, no attempt
is made to explain how a particular expression arises in the development of
an organism. On the other hand there is a development from early embryol-
ogy and 19th century chemistry to cytology which strongly depended on other
technological achievements like the microscope, methods of organic chemistry
and X-ray diffraction. In this line, it is difficult to fix a special date as the
definite beginning of genetic thinking. The doctrine that higher life forms are
constituted mainly of multitudes of cells dates back to Schleider and Schwann
in 1835. It came from the use of light microscopes with greater magnification
power. Lebedeff designed and built the first interference light microscope and
Zermicke the phase contrast microscope in 1932. Such developments made it
possible to make direct observation of mitosis and meiosis, rather than inference
from static situations. Nonetheless, by 1879, Flemming had already indirectly
observed the doubling of chromosome number approaching cell division, and
the causal role of the chromosome in replication became evident thereafter.
The idea that nucleic acids found to be present in the chromosome were the
genetic material, was discounted by geneticists until the middle of this century
however. This was because of the mistaken belief that DNA contained a simple
repeating base sequence. A fuller understanding of the biochemistry of DNA
thus provided a missing link to the chain. From there, a steady development
can be stated which basically has two dimensions. In one dimension the internal
structure of the genetic material was uncovered in ever greater detail. In the
other dimension, the ways were studied in which this material gets transmitted
during mitosis and meiosis, and in which it governs the processes in the cell.
Research along the first dimension led to the famous model of DNA put forward
by Watson and Crick. By bringing the structure of the genetic material down to
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the level of molecules this model marks a ‘final’ level of detail at which research
can differentiate for quite some time. Studies along the other dimension led to
models of transcription and transmission of genetic material in the cell on the
basis of the Watson Crick model, as well as to more macroscopic accounts of
mitosis and meiosis.

According to this development genetics is usually thought of as having two
main branches, and we see no reason to question this. There are transmission
genetics and molecular genetics. However, stronger claims about the relation of
these two branches are frequently discussed. Some philosophers have claimed
that such studies of the underlying mechanisms have superseded those of hered-
itary transmission. For example, that molecular genetics can replace transmis-
sion genetics1 or that molecular genetics will ultimately ‘reduce’ transmission
genetics.2 The vocabulary used in such discussions borrows from developments
in physics, mainly from the transition of phenomenological macroscopic ther-
modynamics to statistical mechanics. Also, the notion of scientific revolutions
as introduced by Thomas Kuhn3 is sometimes brought into play, because the
introduction of a new theory which is able to reduce the original one constitutes
a decisive change, a ‘revolution’. Such a revolution, if it had taken place in
genetics, would be constituted by the introduction of the Watson Crick model
which alledgedly marks the origin of molecular genetics ready to supersede the
transmission branch. Though we do not feel informed enough about the his-
torical events in the middle of this century to reject such a claim on the basis
of historical material, using Kuhn’s characterization of scientific revolutions we
have strong reservations concerning the correctness or adequacy of that view.
To mention just one point, nothing seems to indicate that the introduction of
the Watson Crick model led to specific claims of supersedence among geneti-
cists, or to the claim that transmission genetics is not entirely adequate and
needs correction by the molecular account.

Concerning the claim of reduceability of transmission to molecular genetics
the situation is less clear. The problem here is that such claims are not based on
any rigorous explanation of what is intended by the two theories or approaches
under discussion. Nor is the analysis of their relation carried out rigorously.
Moreover, there is not one single definition of reduction on which we might
agree. Rather, a whole family of such notions can be found in the literature.4 If
reduction is understood in such a strong sense that it makes the reduced theory
redundant then we here also have to express reservations about the claim of
reduceability. The point will be taken up in Chap.7 in more detail.

As opposed to claims of the kind considered we uphold the thesis of unity
of genetics. If we do not want to fall into the same pit we have just made for
‘reduction’ and ‘revolution’ we have of course to say precisely what we mean by
unity. We understand the unity of genetics as provided by three necessary con-
ditions which may be discussed separately though they are obviously strongly

1(Hull, 1974).
2(Schaffner,1969a).
3(Kuhn,1970).
4See, for instance, (Nickles,1973), (Schaffner,1967), (Sklar,1967), or (Sneed,1971).
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related to each other. First, the field has to exemplify a smooth historical devel-
opment. Scientific revolutions are accompanied by bitter, irrational argument
and dispute among the rival groups, reduction in the strong sense mentioned
implies a rather quick and substantial reorientation of research towards the new
approach. In the absence of such occurrences the development may be called
smooth. In genetics the historical development was smooth in this sense.

Second, unity is provided by common methods, methods that are applied
across various different areas of the discipline. In the case of genetics this con-
dition is satisfied, if understood in the right way. By a method we mean the
activity leading from concrete observations to some theoretic result. It is not
required (but also not excluded) that the activity be that of one single person
nor is it required that only one kind of apparatus in the laboratory is involved.
A method may consist in a mixture of various techniques involving different
apparatus, and it may be performed piecewise by different teams specialised
on different steps. Also, a method may consist of a complex sequence of ‘par-
tial’ methods. In genetics we observe a certain interplay of techniques from the
transmission- and the molecular branch. Many molecular applications presup-
pose a previous localization of the area ‘where to work’ on the chromosome by
means of transmission methods. In this sense methods from transmission ge-
netics enter into the molecular method. Conversely, molecular methods may be
used to detect errors in transmission experiments which escape the methods of
transmission genetics. If we regard such applications in a comprehensive way we
have to admit that methods of one branch appear in the other and conversely.
In the remainder of this chapter we will substantiate this view.

Before turning to the details, we have to state the third necessary condition
for unity. This is structural identity on a basic level. By this we mean the
following. Two branches of a discipline are structurally identical on a basic level,
if they both employ one common model (or to say it differently: two structurally
identical models) so that both branches differ only in the way in which they
refine the basic model. Both notions involved here, that of a structure (and
structural identity) and that of refinement will be substantiated in Chaps.2 and
4 to 7 which in this sense may be regarded as showing the unity of genetics.

We now turn to the interplay, and thus the unity, of transmission and molec-
ular genetics from a methodological point of view. By transmission genetics, we
understand that branch of genetics which studies the transmission of a trait
through two or more generations. Studies are essentially probabilistic, and
concern the proportion of a population exhibiting a specified trait. As such,
although a knowledge of the underlying mechanism giving rise to that charac-
ter may also be studied, this is not an essential part of transmission genetics.
Although direct studies of chromosomal structure or molecular structure are
not possible in transmission genetics, insights into that structure can be ob-
tained. Thus, linkage maps can be obtained through comparisons of progeny
with differing assortments of characters. These indicate a linear ordering of
the hypothetical factors deduced to be related to the appearance of specific
character differences.

The other main branch of genetics is usually held to be molecular genetics.
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This is often narrowly interpreted as the Watson Crick model associated with
DNA and RNA. The original theory has been expanded greatly over the years,
but with few modifications of the basic account. Many would find it difficult
to see molecular genetics as a proper theory, but render it as ‘empirical fact’.
Putting to one side just what is intended by ‘empirical’, this view neglects
the fact that although almost all of the early work in molecular genetics was
carried out with haploid organisms, it can hardly be claimed that molecular
genetics is limited to haploids. What happens in the study of non-haploid
organisms is that there is considerably reduced certainty about the nature of
the progeny. This is due to crossing over, translocation, transduction, and other
effects on the genetic material. Many of these effects are observed in the study
of entire chromosomes, and in this respect studies of the chromosome are very
closely related to the studies of the genetic material of which they are in part
composed. We shall include such chromosomal studies under the heading of
molecular genetics. Indeed, we were tempted to include molecular genetics as
a part of chromosomal genetics, which would be more logical, but avoided this
on account of the preponderance of the term ‘molecular genetics’.

We will now explain in more detail what we mean by transmission genetics
and molecular genetics. Transmission genetics has two areas; Mendelian and
linkage genetics. In both cases, hereditary character differences are assigned
hypothetical factors, with which they are associated, sometimes in a quite com-
plex manner. This relation would only be one-one in a haploid organism, which
case would be trivial for transmission genetics. In the diploid, a typical exam-
ple is of dominant-recessive antagonism. Given that two factors A and a have
been related to a character difference, it is found that while A and a gives one
expression of that character, and while A and A gives the same expression, a
and a does not.

In Mendelian inheritance, factors related to the same character segregate in-
dependently in passing from one generation to next. Thus, given the mating of
a parent with factor content AA with a parent with factor content aa, the pro-
genal contents AA,Aa,Aa, aa, are all equally likely to appear. Similarly, factors
related to different characters assort independently. Thus, given the parental
factor contents AABB and aabb, the progenal contents AABB,AABb, ..., aabb,
are all equally likely to occur. Since the relation between factor content and
character is generally not one-one, this does not mean that all of the different
phenotypes will be equally likely to appear.

In linkage genetics, although factors related to the same character still segre-
gate independently, factors for different characters do not assort independently.
Instead, there is a degree of ‘linkage’ between them. Thus, given the factor
contents AABBCCDD and aabbccdd in parents, it might be found that the
combinations in which BC is not replaced by Bc or bC, appear more frequently
than would have been expected from independent assortment. The complexities
of relating the phenotype to factor content remain, and present the geneticist
with challenging problems, which may require careful control of the parental
factor content in mating experiments where these are possible. In the study of
human transmission, the pedigree may require careful study.

11



The linkage observed in linkage genetics does not occur in a haphazard man-
ner. Indeed, it is possible to order factors on a linkage map. This is constructed
by studying the proportions of progeny in which there has been interchange of
factors between those of parents, or ‘crossing over’ (see Chap.3). The higher
the level of crossing over, the more distantly are the factors placed on the map.
Some twenty years after this realisation, it became possible to identify chromo-
somal features and to relate changes in these to the linkage map. Two points
are important here. First, that the linkage map could provide an ordering to
the genetic material, without the necessity for direct observation. Second, that
the geometrical map distances do not correspond to the linkage map distances,
even if the ordering does. We feel it is important not to blur the way in which
transmission genetics operates with the process of direct observation. This is
especially important, since the term ‘factor’ and the term ‘locus’ are often used
interchangeably with the ‘gene’. We wish to keep Mendel’s original term ‘fac-
tor’ for the hypothetical and probabilistic entity of transmission genetics.

In some respects, molecular genetics can be seen as a refinement of the study
of the genetic material of the chromosome. The tools employed and the concep-
tual apparatus, are, however, those of the biochemist. Furthermore, molecular
genetics provides a mechanism for the replication and transcription of genetic
material. Nonetheless, there are aspects of genetics which molecular genetics
does not yet appear to be active upon. We refer to the mixing of parental genes,
accepted as important and studied for a century by the transmission geneticist.
Although molecular genetics provides some degree of certainty in predicting the
progeny of a haploid, this is removed for non-haploid cases. This is because the
interchange of genetic material from the two parents can not yet be predicted.
In the case of closely neighbouring loci, even transmission studies would not
help, since the numbers of matings required for such probabilities of crossing
over would be too large except for species which breed extremely rapidly. Nei-
ther does it appear that the crossing over process is random. Indeed it may be
under genetic control. An understanding of the biochemical control of crossing
over would be of great value. For example, the transmission of genetic disorders
due to non-allelic recessive genes might be controlled.

One of the earliest applications of transmission genetics was by Mendel in his
studies of pea colour.5 In fact, he discovered that grey pea colour was dominant
to white. That is to say that if we use G to indicate the presence of the factor
for grey, and w to indicate the factor for white, that either GG or Gw would
give grey seed colour, while ww would give white. The unknown factor content
of parents could be determined from the proportion of grey and white progeny,
as in the following example.

Let a grey seeded plant fertilise a grey seeded plant. Suppose that 118
progeny are grey seeded while 39 are white seeded. Consider the possible com-
binations of parental factor contents (after Strickberger 1985).

5(Mendel,1901).
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GG x GG = all progeny GG with appearance grey
ww x ww = all progeny with appearance white
... ...
Gw x Gw = GG,Gw,wG,ww.

Gw,wG and GG all give grey appearances, ww gives white appearance. Because
of independent assortment, in this case 3/4 will be grey, while 1/4 will be white.

Thus Gw is the factor content of both parents, in particular both parents
are heterozygous.

It is seen from this example that the observed proportions of 39/158 and
118/158 only approximate the expected probabilities. Indeed it would be ex-
tremely improbable that they would exactly equal it. As a matter of interest,
Mendel’s own results were improbably good!6

Here is another application of Mendelian genetics (after Strickberger, 1985).
This time it is to silky feathers in fowl, the factor for which is recessive to that
for normal feathers. 98 birds were raised from a cross between individuals that
were heterozygous for this factor. The number which were silky and the number
which were normal can be calculated as follows. Taking + to signify normal,
and s to signify the silky factor, we obtain:

+s×+s = ++,+s, s+, ss.

Now, +s, s+ and ++ all give the normal phenotype, while ss gives silky feathers.
Thus 3/4 will be normal and 1/4 will have silky feathers. That is to say that
24 will apear silky and the rest normal.

For both of the above applications, the phenotypes may be described as those
of gross characteristics. However, Mendelian genetics does not only involve such
gross characters. In particular, there may be some advantage in describing the
characters in biochemical terms. Conversely, the use of biochemical terminology
does not imply that molecular genetics is now involved. The character differ-
ences for Mendelian genetics may be microbiological, electrophoretic, numerical
or other, provided the choice enables unique identification of the individuals
which carry that trait. The human disease phenylketonuria is biochemically
characterised by an alteration of the body’s metabolism for phenylalanine. As a
result, pyruvic acid is excreted in the urine. Clinically, the disease shows a fairly
well defined symptomology, although in cases of doubt, biochemical evidence is
taken as confirmatory. Garrod7 postulated that hereditary distribution of the
disease might be explicable by Mendelian genetics. Jervis8 collected informa-
tion on over 20 000 patients and their relatives concerning their physiological
state and the results of ferric chloride and 2,4 dinitrophenylhydrazine tests for
the presence of phenylpyruvic acid in the urine. A number of possible genetic
hypotheses existed, and Jervis suggested that the gene was recessive autoso-
mal (non sex-linked). Given the ratio of affected children to normal children,

6See (Edwards, 1986).
7(Garrod, 1902, 1909).
8(Jerwis, 1954).
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this suggestion was upheld. In such an application to a human disease, two
complications occurred. First, a number of heterozygous parents would escape
detection, since their families did not contain any actual cases. Second, some
families will have a greater than random proportion of affected children. Note
that in this application, there is a choice between the way in which the character
difference can be described, whether in terms of the pathology of the disease or
through the results of biochemical tests. It may well be that a disease which
has a poorly defined symptomology can lead to erroneous genetic analysis until
a suitably precise method of diagnosis appears. We shall see later that there is
at least one paradigm case of this occurring, namely in the disease called sickle
cell anaemia.

Turning to Mendelian independent assortment, a further case in which the
character difference may be described as either biochemical or gross will be
given. DeVries9 and Wheldale10 suggested that the inheritance of corolla colour
in antirrhinum majus could be explained in terms of the following factors:

Y : yellow lips/ivory tube I: ivory lips
L: magenta lips T : magenta tube

y, i, l, t can be used to denote the absence of these factors. This hypothesis was
upheld. Later Onslow11 and Lawrence12 found that Y produces a yellow flavone
luteolin in the lips and the less oxidised ivory apigenin in the tube of the flower.
I suppresses luteolin, apigenin being formed throughout. If Y is present, 6L
produces a tinge of red anthocyanin in the lips (delilah) and this is extended to
the tube when T is also present. Again, whether the character differences are
expressed in terms of colours, or in terms of biochemicals makes little difference
to the application of Mendelian genetics.

Much of the early work on linkage genetics concerned Drosophila. Most of
the important character differences found for Drosophila had been located on
a linkage map by 1920. We will consider the map for the X- chromosome of
Drosophila Melanogaster as provided by Morgan13 and Dobzhansky.14 In par-
ticular, we shall deal with three of the twelve factors they discussed, namely the
mutations ‘yellow body colour’, ‘white eye’, and ‘forked’. The normal characters
associated with these mutations are wild type body colour, red eye colour and
not forked respectively. Experimental matings of individuals having all three
mutations with normal individuals gave a fraction of 875/81299 progeny with
yellow body colour, white eye, but not forked and a fraction of 1676/3664 with
wild type body colour, but white eye and forked. In this way, the probability of
‘crossing over’ occurring between white/red eye and forked/not forked was seen
to be 0.011. The probability of crossing over occurring between wild type/yellow

9(DeVries, 1900).
10(Wheldale, 1907).
11See (Wheldale, 1907).
12(Lawrence, 1950).
13(Morgan, 1916).
14(Dobzhansky, 1932).
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body colour and white/red eye colour was 0.457. These probabilities require
some modification before producing linkage map values. This involves multipli-
cation by 100 and correcting for the possibility that double crossing over had
occurred. It is thus established that, if we take the map position of forked/not
forked as zero, red/white eye is at 1.1 units, while yellow/wild type body is at
56.8 map units.

The cytological map of the X-chromosome of D.Melanogaster agrees with
the ordering of the linkage map. However, the loci when relativised are now
at 0, 33.0, and 56.8. The reason for this discrepancy has been sought in the
structure of the chromosome and its constituents. It has been considered from
the position of the variation of stiffness of the chromosome as distance from the
centromere increases. More recently, it has been argued that crossing over is
under genetic, indeed evolutionary control. The molecular mechanism is still
sought. One feature of our analysis is that the models produced in the following
can encompass the entire spectrum of such research.

It was mentioned earlier that the relation between a character difference and
its factors may be quite complex, although until now only cases of antagonistic
dominance and recessiveness have been considered. Thus, in partial dominance,
the heterozygote has a character difference which is intermediate between the
dominant and the recessive trait. An application is seen in the experiments of
Rasmussen on the flowering time of peas.15 In over-dominance, the heterozygote
produces a character difference which is in excess of the dominant one. Over-
dominance is usually seen in features which affect biological fitness, such as size,
productivity and viability. In co-dominance, each factor can be thought of as
contributing to the final character difference. Only in the heterozygote is the full
trait realised. An example of co-dominance is found in the blue Andalusian fowl.
In this the blue colour is due to a fine mosaic of black and white areas, the blue
colouration is only seen if factors for black and white are present. Selecting the
correct relation between factors and their related character differences is a major
difficulty with transmission genetics. Indeed, in the case of the fowl mentioned
the appearance was at first thought to be due to incomplete dominance between
black and white colour factors. Closer observation of the trait clarified matters.
Unfortunately, factors at different positions of the linkage map frequently affect
the same character, and indeed one factor may control whether another can
be related to a character difference, or be ‘epistatic’ to it. A further problem
involves whether the effect of a factor can ‘penetrate’ and be observed. Thus, in
Huntingdon’s chorea, the effects are not evident until later in life, even though
the gene is present from birth. A further complication is that of ‘multiple
allelism’. In this a number of factors may occupy the same position on the
linkage map. Only two of this allelic series are actually involved in any case.
Such multiple allelism is important in quantitative inheritance.

It may well be agreed, considering the enormous complexity of transmission
genetics, that a simpler theory would fall on fertile ground. Early accounts
of molecular genetics may have shown such a promise. However, molecular

15(Rasmussen, 1935).
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genetics is as complex in at least two respects. First, by necessitating that
investigations be carried out at the molecular level, astronomical quantities
of data must be handled. Second, although much is being learned about the
process of transcription and of replication in the haploid, little is known about
the control of diploid replication.

As an application of molecular genetics, we shall consider the A polypeptide
chain of the tryptophan synthetase enzyme of E.Coli. This chain, approximately
280 amino acids long, shows a large number of mutations whose genetic map has
been determined in great detail. Corresponding to this map is a known amino
acid sequence of protein A, in which single amino acid changes can be assigned
to specific mutations.16 There is redundancy in the genetic code, in that more
than one nucleotide triplet can give rise to a specific amino acid.

For example, adenine, thymine and adenine or adenine, thymine and guanine
can both give rise as codon 174 to tyrosine. Applications such as this, however,
tend to give the impression that the genotype and phenotype of progeny can be
given with certainty. As has been mentioned previously, such examples are to
haploid organisms and avoid problematic mixing of parental loci. Also, the vast
numbers of loci present in studies of even simple organisms make it necessary for
some form of focussing to occur prior to use of molecular genetics. Traditionally,
transmission genetics has suggested a certain region of the chromosome and the
DNA as being important for the study of a trait, and molecular genetics has
then concentrated on this.

Thus, molecular and transmission genetics do not operate as independent
theories, nor does it appear that molecular genetics is within sight of replacing or
taking over transmission genetics. At the same time, the techniques used by the
molecular geneticist are generally quite different from those of the transmission
geneticist. Accordingly, the type of resources required will be different, and so
will the practical expertise required. These factors, coupled with the fact that
transmission and molecular genetics have their roots in different disciplines, have
led to an institutional schism. We hope, that one of the benefits of our study
of the structure and dynamics of genetics will be some indication of the way
in which this schism might be healed. This in turn may lead to more efficient
and productive use of the resources available to both the molecular and the
transmission geneticist.

An illustration of the interplay of molecular and transmission genetics is
found in the study of sickle cell anaemia. This study also raises one or two
other interesting matters.

In some individuals, red cells may undergo reversible alteration in shape
when the partial pressure of oxygen changes in a cell. This change is from a
normal cell shape to a ‘sickle’ cell shape. In fact, a more and a less severe form
of disease is associated with this sickling. Sickle cell anaemia involves a network
of deleterious effects including abdominal pain, increased breakdown of ery-
throcytes and renal effects. These in turn lead to compensatory haemopoiesis,
anaemia, jaundice, HbF formation, failure to concentrate urine, and so on.

16A full listing of the loci and the associated amino acids is given in (Dawe, 1982).
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Sickle cell trait is far milder and is characterised almost entirely by the ap-
pearance of cell sickling in the presence of reduced oxygen pressure.

Originally, the two forms of the disease were thought to be extremes of a
single character.17 It was postulated that the ability to sickle was due to a single
dominant gene. The difference was thought to be due to a variation in expression
between individuals. However, Neel and Beet18 independently postulated a gene
which, in heterozygous condition resulted in sickle cell trait but in homozygous
condition resulted in sickle cell anaemia. One way of settling the issue was
through the following observation: If the homozygous-heterozygous hypothesis
is correct, both parents of any patient with sickle cell anaemia would sickle in
reduced pressure of oxygen. A dominant gene with variable expression would
only require one parent to show sickling under the same conditions. In fact,
every parent of a child with sickle cell anaemia had blood cells which sickled.

Electrophoretic studies by Pauling19 indicated that the cause of the dis-
ease was a molecular change in the structure of the haemoglobin molecule.
In fact, the abnormality is in the beta chain. Fragmentation and sequential
electrophoretic and chromatographic studies indicated that the difference was
simply in the location of a single peptide.20 This was a substitution of a valine
for a glutamatic acid group in the sixth amino acid. As a result of this change,
differences of solubility accompanied by markedly increased viscosity led to a
less flexible erythrocyte of a sickle shape. The molecular genetics of the disease
can now be appreciated, but it is also seen that this was achieved through the
offices of transmission genetics. Transmission geneticists effectively told molec-
ular geneticists where to look, but could not say exactly what would be found.
Notice, however, that in this example, the evidence provided by transmission
genetics does not involve large numbers of progeny. This is because of the
difficulties involved in human populations, and the ethical reasons preventing
experimental matings. In such cases, the study of pedigree can compensate for
these difficulties to some degree. A further feature of the example is the part
played by a refined characterisation of the disease in establishing the correct
genetic hypothesis.

We now can abstract from what has been said so far. Transmission genetics
concerns populations of individuals and matings between these. Associated
with each population is a type, or set of character differences. In any given
application only a few of these characters will be studied, sometimes only one
pair. Associated with each character difference is at least one factor. Knowing
the character does not, however enable the factors responsible to be known. A
hypothesis is made and the results of mating experiments will hopefully validate
the hypothesis. Alternatively, the results of mating experiments may enable a
correct deduction of the factors involved to be made. The procedure is to mate
two individuals and to look at the ratios of progeny with different types. The
extent to which these ratios match up with the predictions from calculations on

17(Taliaferro and Huck, 1923).
18(Neel, 1949).
19(Pauling, 1949).
20(Ingram, 1957).
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the basis of independent assortment or segregation then validates or invalidates
the hypothesis. However, in the case of linkage, by comparison of crossing over
frequencies associated with the factors of a character difference under study with
established values, the map position of the new factor can be established. In
practice it is extremely improbable that the theoretically expected probabilities
would be obtained in an actual experiment. Statistical analysis can then be
employed to establish whether the variation from expected values is acceptable
as due to chance, or whether the original hypothesis might be wrong. When
small numbers are involved, recourse to statistical analysis may be unreliable,
as in the case of human traits. The wrong hypothesis may then go undetected.

Figure 1-1 shows a schema to illustrate the structure of transmission genetics.

Fig.1-1
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However, the situation has to be generalised to one in which the parents are
themselves part of populations. A geneticist given the appearances of the male
and female parents would like to know and to predict the appearances of the
progeny and the proportions of progeny with different appearances. This cannot
be achieved directly. Instead, a factor content is attributed to the male parent
and a factor content is attributed to the female parent. Either by calculations
based on independent assortment and segregation, or by reference to linkage
maps, the probabilities associated with varied types of progeny can be estab-
lished theoretically. This process constitutes the top line of the figure. To test
the hypothesis, the cardinality of the male and female populations is established
as are the cardinalities of the varied types of progeny. This is shown in the bot-
tom line of the schema, and might be held to constitute the empirical content of
the theory. Both the populations and the factor contents are connected to the
traits (vertical arrows). The connection between a character and its factor con-
tent may be quite complicated, as has been mentioned previously. The relation
between a population and its trait is usually quite straightforward, but may also
become subject to error, as in the case of the andalusian fowl mentioned earlier,
in which the plumage thought to be blue was actually a mosaic of white and
black feathers. The cardinalities of populations of progeny are related back to
their types, and these in turn are related to the factor contents. The proportions

18



of progeny with different types should match up with the expected probabilities
to within accepted levels of statistical variation.

A similar schema can be drawn to illustrate the structure of molecular ge-
netics, and this is shown in Figure 1-2.

Fig.1-2
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As with transmission genetics, the geneticist given the appearance of two par-
ents would like to predict the appearance of progeny, or the numbers of different
types of progeny which would be produced. This is represented in the middle
horizontal row. It is not possible to achieve this result directly, however. In-
stead, loci are associated with the appearances of the parents and progeny. As
in transmission genetics, the relation between appearances and loci may be-
come extremely complex. Given the dictionary provided by Watson and Crick,
any amino acid character can be related securely back to a small number of
nucleotide triplets, and in this respect, matters are far simpler. Relating such
amino acids to their polypeptides and hence through to the gross structures
frequently studied in transmission genetics removes much of this advantage,
however. The process by which the loci of progeny are established from that of
parents is also, at first sight, quite straightforward. It has been said previously
that this is only the case if we restrict ourselves to the haploid cases and ig-
nore the effects of crossing over, transduction, translocation etc. As soon as such
more general situations are considered the loci of progeny can be calculated only
with probability. The theoretical content of molecular genetics is established by
the top line of the figure which pays attention to the probabilities of progeny’s
loci. However, unlike transmission genetics, molecular genetics is based on the
mating of individuals rather than populations. The bottom line of the schema
indicates the mating of two individuals to provide various progeny. In molecular
genetics, the details of how the probabilities of different loci are achieved in the
non-haploid and taking account of the effects mentioned previously are still to
be worked out. Roughly, the observed proportions of individuals are related
through their characters to the locus contents of varied progeny, as in the right
hand column of the schema.

This schema can already improve our understanding of the development of
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genetics. In general, a mapping is first noticed at the level of traits, that is
the central horizontal row. The fact that there is similarity between certain
features of progeny and their parents and ancestors is the cue to use a genetic
theory. The numbers of progeny with such characters may then be observed in
transmission genetics, and this is represented by the lowest row of Figure 1-1.
A hypothesis concerning the factor content of the individuals is next made. At
the same time, a hypothesis is made about the relation between these factors
and the characters. Also, a hypothesis has to be made about the nature of
the mapping on the top line of Figure 1-1, denoting the parental to progeny
factor mapping. If all three hypotheses are correct, the probabilities predicted
by theory will agree with the proportions of individuals with different types.
Unfortunately, it is possible for two of the hypotheses to be wrong and still
get agreement. This is because the effects of one wrong hypothesis may be
countered by the effects of another wrong hypothesis. By varying the choice of
characters in mating experiments, hopefully the mistake would be found. In a
sense, merely repeating similar experiments would not be so helpful, but is the
more immediate way of checking the choice of hypotheses.

There may thus be some doubt, even after the most careful application
of transmission genetics as to whether the three hypotheses are correct. One
of the features of transmission genetics, mentioned before is the linkage map.
It has been mentioned that the ordering of factors on the linkage map is the
same as that of loci on the chromosome, even though the relative distances
between factors is not usually the same as that between loci. The co-ordering
may provide added support for a hypothesis, or lead to its abandonment. If
the nucleotide triplets responsible for a character can be identified the matter
can be considered as finally settled. Molecular genetics thus adds certainty
to the solution of a problem in genetics which was brought into near focus by
transmission genetics. This passing of a problem from transmission to molecular
genetics appears to be the normal way in which a problem in medical genetics
is resolved, as was illustrated in the preceding discussion of sickle cell anaemia.

The schemata provided in Figures 1-1 and 1-2 only relate to a transition from
one generation to the next. However there is in fact no difficulty in extending
them for any number of generations. The precise mechanics of this iteration
require some formalism, however, and will be returned to in Chap.6. Work on
genetic algebras is especially significant in understanding the way in which these
structures may be extended to problems of the n-th generation. Furthermore,
‘peeling’ and other processes can be applied for pedigree studies. Indeed, the
interaction between evolution and molecular processes may be more readily
understood once the unifying features of genetics are made explicit. We do not
pursue this last issue here, however. In any case, our analysis goes way beyond
the traditional questions posed by philosophers concerning the relation between
molecular and transmission genetics. Not only can we throw light on that issue,
but can discuss the overall structure of genetics with a breadth which would be
of value both to scientist and philosopher alike.
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Chapter 2

A Model for Genetics

The term ‘model’ is used in a variety of ways. In arts, we may speak of a model
as the thing which is depicted. In this usage the model is the original. Second,
a model may mean an image of some original, like a map or a toy-railway. Here,
the model is not the original. A third usage, in particular in science, is that of a
model as a hypothetical construct to be used in order to understand, or to deal
with, or even to visualize, ‘to depict’ a given real system which is not entirely
observable or understandable on its phenomenological ‘surface’. We call these
conceptual models. Clearly, the three kinds of models are related to each other.
In all cases there is a relation between the model and some other entity, and the
two have to be similar or homomorphic. In science we find many models in the
second sense, models which function as an image, like 2-dimensional drawings
of chemical formulae, and macro-models of molecules. Abstract, conceptual
models with strong hypothetical features are not frequent.

In genetics, the basic attitude up to now is that of empirical research. Bold
theorizing is neither necessary nor highly esteemed. However, with the degree of
maturity achieved, knowledge becomes very complex, scattered, and specialized.
Scientific interest in the metatheory of a discipline is most intense when there
is some kind of crisis. It may well be that biology approaches an ‘information
crisis’ in which the amount of empirical data generated becomes unintelligible
without an understanding of the metatheory. In this way appropriate theories
may be developed more readily. Conceptual models at this stage become useful
in several ways.

First, they may provide a reduction of complexity. Various facts, or various
different local images are subsumed under one conceptual model and thus inte-
grated into a larger unit. Usually, the conceptual model will be described with
only a small sample of all the concepts used in the field, the other remaining
concepts being definable in terms of the ‘primitives’ used to describe the model.
This does not mean that the primitives are really more central. They will be
central of course but so will other, non-primitive concepts. The point here is
that, in order to describe the model the number of concepts is reduced. Nev-
ertheless, since the other concepts are definable in terms of those of the model,
and therefore connections not made explicit in the model may be obtained by
means of definition and derivation, nothing gets lost. It seems that this reduc-
tive potential of hypothetical models has not yet been fully appreciated within
genetics.

Second, abstract models provide an easy survey and thus also a good basis
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for comparisons. In particular, they make teaching much more efficient.
Third, they provide some guidance for sepcializing, for finding and evalu-

ating various complex applications. The Watson Crick model, for instance,
though still more of an image than of a conceptual model, induced a series of
new experiments and applications.

Last but not least, today conceptual models serve as a basis for computer
applications, for computer assisted search or calculation, but above all for expert
systems and discovery programs. We witness today the first running computer
programs intended to create new hypotheses obtaining good results21 and we are
already used to expert systems like MOLGEN in genetics.22 Clear conceptual
models greatly facilitate the construction of such programs.

In this book we aim at introducing several models for genetics which are
all of the third kind listed above: abstract, conceptual models with hypothet-
ical components. Further advantages for the unity of genetics or questions of
comparison will become evident during the presentation.

In order to substantiate what has been said in the previous chapter we have
to go into some detail. However, in contrast to the situation at the frontier of
research we cannot afford to concentrate on one detail and leave ‘the rest’ for
a while as though it was not important. Since we are talking about genetics as
one unit, we have to keep sight of this unity.

The best way not to lose sight of some important feature is to incorporate
it into an overall model. In fact, the main advantage of models and theoretical
hypotheses is that they systematize and thus make easily comprehensible and
storable large groups of facts and features. Models integrate large arrays of
isolated data into intuitively comprehensible, ‘simple’ wholes.

In this chapter we set up a simple, precise model for genetic theories. The
model covers transmission as well as molecular genetics and thus provides a
strong argument for our thesis of unity. As with every model, concrete ap-
plications will require further special assumptions. This holds true for special
applications within each branch of genetics, and those assumptions will differ in
particular for applications of transmission genetics as contrasted to molecular
genetics.

More precisely, this presupposes a particular view of how models are ap-
plied. The picture we have in mind here is this.23 By an intended system we
mean a concrete real system, in the laboratory or elsewhere clearly delineated
from its surrounding, to which a geneticist draws his attention, and to which
he intends to apply, or indeed applies, a genetic model or hypothesis. One or
several hypotheses may be regarded as characterizing a set of possible models.
Each model is an abstract, possible entity or system about which the hypothe-
ses make sense and which, in addition, satisfies the hypotheses. So two kinds
of systems are involved: intended systems representing ‘reality’ and abstract
systems (models) representing hypotheses. To a first approximation a theory

21See (Langley, Simon et al., 1987), for example. On pp.274 they also discuss briefly the
possibility of a programme finding Mendelian hypotheses.

22See (Stefik, 1981a,b).
23Compare, for instance, (Stegmueller, 1976).
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T therefore may be seen as consisting of two components, a class M of models
and a set I of intended systems:

T = 〈M, I〉.

It has to be stressed that the notion of a system does not imply a purely static
view. There are ‘dynamical systems’ covering transitions, evolutions or other
kinds of processes. It is not necessary here to spell out in which way the set
of intended systems is determined. It certainly is not characterized in abstract
terms, and also not in the form of a definite list. Rather, there is some amount
of agreement in the geneticists’ community that this and that system is intended
for a particular theory, whereas others are not. By application we then mean a
process in which it is attempted to ‘subsume’ some system intended for a theory
under the models of that theory. Usually, in the course of this process three
stages may be distinguished, at least conceptually (often they are intermingled
in time). First, the real system has to be conceptualized in an appropriate way:
the geneticist has to come to believe that all his theoretical concepts refer to
entities or features of the system. Next, he has to make out those ‘parts’ of the
system he really knows. This amounts to gathering observed data formulated
in the theory’s observational vocabulary. Finally, he tries to extend the data
previously obtained by ‘adding’ further hypothetical or theoretical ‘parts’ or
‘functions’ so that the complete set of data plus the information contained in
the theoretical functions satisfy the hypotheses. This process is successful if
and only if, at the end, a model corresponding to the initial intended system is
obtained.

The point about this picture is that in most cases the process of subsump-
tion requires further assumptions which are not regarded as basic to the theory
in question. These assumptions vary in status. Some of them may still express
laws but laws of a scope more restricted than that of the theory’s basic laws.
Some may be idealizing assumptions about the absence of further relevant in-
fluences. Some are law-like ad hoc assumptions, some just concern the choice or
determination of certain parameters. So the above picture of how models are
used in the process of application has to be refined as follows. First, each the-
ory has its corresponding class of basic models, that is, possible systems which
satisfy all the theory’s basic laws. Second, in the process of subsumption of
a real case under a model, further assumptions are necessary which may vary
from application to application. The special assumptions are not completely in-
dependent from the basic model. Rather, the basic model may be said to guide
and to direct their choice. In this sense, the process of application -even though
being analyzable into distinct subprocesses- forms a unit in which basic models
and special assumptions are tightly bound together. To a better approximation
therefore a theory has to be seen as a net of model classes plus some assignment
of intended systems to each class such that there is one distinguished class of ba-
sic models from which all others can be obtained by some kind of specialization
or refinement.

The genetic model to be presented here is the basic model or core model
which may be used in all genetic applications. Its refinement by special laws
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and other assumptions required in special, restricted ranges of application will
be the subject of the following chapters.

Our model comprises two different levels: the level of observational concepts,
and a theoretical level. The observational level is however further differentiated
into a ‘most basic’ level of individuals, and a level of properties of these individ-
uals. It will sometimes be convenient not to conflate the latter two. Orthogonal
to this vertical dimension there is a horizontal dimension which covers the ac-
tual happenings in the course of time: mating and the production of offspring.
In this dimension our basic model contains the distinction between parents and
progeny, and their respective appearances, namely the phenotypes.

The items on the two sides of each distinction are related by operators. There
is an operator assigning to each individual its ‘properties’, its ‘appearance’,
‘structure’ or ‘function’ and another one relating the theoretical level with that
of such ‘appearances’. Horizontally, at each level we have an operator relating
the parental side with that of offspring. We therefore may depict the basic
structure of the model by six boxes arranged in three layers with a ‘before-after’
distinction at each layer, and with arrows (operators) communicating between
the boxes.

Fig.2-1
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The distinction between boxes and arrows may be regarded as a coarse distinc-
tion between individual and relational concepts. One might say that each box
represents an individual concept, each arrow a relational one. Next the content
of the boxes has to be specified, and the meaning of the arrows to be explained.

We begin at the ‘lowest’ level, that of individuals. Here, a slight complication
arises from the fact that, in transmission genetics, ‘individuals’ will be popula-
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tions. However, nothing to be said in this chapter will become false if we extend
the term to apply to proper individuals as well as to populations. For the sake
of terminological uniqueness, we will use the term genetic individual whenever
we want to be so abstract as to cover both meanings. The decisive feature of
genetic individuals is that they mate, and thereby produce offspring. We have
to distinguish parental genetic individuals (parents, parental populations) and
those individuals produced by the parents (progeny). Since two parents may
produce many kinds of offspring we have to enumerate. The parents are denoted
by

PARENT 1, PARENT 2

and their offspring by

PROGENY 1,...,PROGENY n

where n is the number of different genetic individuals occurring in the offspring.
In the population case the difference between genetic individuals basically is
decided in terms of phenotypes. It often is natural to take a population as a
maximal set of individuals all of which have the same phenotype. This must
not be regarded as a strict definition of populations, however. Usually, there
are other, additional criteria to distinguish populations: from trivial ones like
separation in space and/or time to subtle ones like reference to differences in
the immune system. Only in Chap.6 will we use this ‘definition’ of populations,
and only for reasons of simplicity.

The transition from the parents to their progeny is represented by a function
we call MATOR. MATOR assigns to any two parents their progeny:

MATOR(PARENT 1, PARENT 2) = 〈 PROGENY 1,...,PROGENY n〉

where the number n may vary with the parents. In other words, MATOR for
any two parents specifies their offspring (which may be none, of course). The
individual level in the model therefore has the form

Fig.2-2
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For example, (Rasmussen, 1935) observed a five day difference in flowering time
of peas between parents could give rise to progeny with early, intermediate, and
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later flowering. Here, PARENT 1 and PARENT 2 are sets of pea plants, re-
spectively, of different flowering time. To these MATOR assigns their progeny: 〈
PROGENY 1,PROGENY 2,PROGENY 3〉 where the PROGENY i denote sets
of pea plants flowering early, intermediate, and late, respectively. As another ex-
ample, take PARENT 1 and PARENT 2 to be two human individuals whose red
cells sickle in reduced pressure, and take, say, PROGENY 1,...,PROGENY 4 as
four offspring of these. Each offspring, again, will have sickling red cells, but in
this example they are not identified by this condition. Rather, the interpretation
here is at the level of individuals proper.

Let us look at the ‘middle’ level of the model, that of phenotypes. Genetic
individuals are distinguished by their appearance. In various applications just
one trait and its different expressions, or several traits may be considered. In
the case of populations, of course, every individual in the population has to
exemplify the ‘defining’ expressions. A complete characterization of individu-
als in terms of their appearances will perhaps remain a limit case hardly ever
achieved: Applications of genetics usually concentrate on one or few traits. By
a phenotype we simply mean one or several expressions of these traits. Conse-
quently, the term phenotype is not intended to refer to the complete appearance
of a genetic individual. It is used as a technical term to denote one or more
expressions of those traits which are relevant in a given application. Just as
with individuals we have two parental phenotypes, denoted by

PHENOTYPE 1 and PHENOTYPE 2

and n phenotypes associated with the n different offspring:

PHENOTYPE OF PROGENY 1,...,PHENOTYPE OF PROGENY n.

Phenotypes are ‘directly observed’. Quantitative consideration of the distribu-
tion of phenotypes in offspring formed the starting point of genetics. Accord-
ingly, at the level of phenotypes we have to introduce distributions of pheno-
types. We use such distributions for the side of progeny only, the model can be
easily extended however to include distributions on the parental side (compare
Chap.6). Distributions of phenotypes are practically always given by means
of relative frequencies. The total number n of offspring from two parents is
counted, as well as, for each particular phenotype exemplified in the offspring,
the number mi of individuals of this phenotype in the offspring. ri = mi/n then
is the relative frequency of occurrence of that particular phenotype, and by col-
lecting all those relative frequencies we obtain a distribution of phenotpyes.

Formally, a distribution is a function which to each element of a given set as-
signs a real number indicating the ‘weight’ or ‘probability of occurrence’ of that
element. This notion is more narrow than that of a probability distribution,
and also different from the notion of a distribution as used in quantum mechan-
ics. For this reason we will speak of genetic distributions, or Γ-distributions for
short. In the present case the elements of the set are the different phenotypes in
the progeny, and their probability of occurring is approximated by the observed
relative frequencies. Since there are only finitely many different phenotypes we
may assume a fixed order of those, and write

26



〈π1, ..., πk〉

to denote the sequence of phenotypes in that order. With respect to this order
we can always write a distribution in explicit form just as a k-tuple of numbers

〈r1, ..., rk〉 , ri ≤ 0,
∑
ri = 1

where each number ri is the weight or probability of phenotype number i oc-
curring in the corresponding sequence of phenotypes. If it is not clear from the
context in what order the phenotypes are written down we will include them in
the sequence representing a genetic distribution thus writing

〈r1π1, ..., rkπk〉

This notation is just intended to represent a genetic distribution in more explicit
form.

The number k of phenotypes need not coincide with the number n of dif-
ferent progeny. In transmission applications these two numbers may be taken
identical because each PROGENY i in this case is a population, and populations
are usually distinguished in terms of phenotypes In general the number of phe-
notypes in offspring may be smaller than the number of offspring, for instance
because different individuals in the offspring may have the same phenotype.

In molecular genetics the distribution of phenotypes may be used in two
ways. On the one hand, relative frequencies may be calculated from the offspring
of one parental pair of individuals. However, these frequencies may be far off
the mark. On the other hand, therefore, relative frequencies may be obtained
by iterated experiment or observation of mating identical (or similar) parental
pairs, as was the case in the example of sickle cell anemia. The latter use is of
course also characteristic for transmission genetics.

The transition from parental phenotypes to distributions of phenotypes in
the offspring is described by a function we call DISTRIBUTOR. It takes the two
parental phenotypes as arguments, and maps them into a genetic distribution.

DISTRIBUTOR(PHENOTYPE 1,PHENOTYPE 2) =
〈r1π1, ..., rkπk〉 =

〈r1PHENOTYPE OF PROGENY 1,...,rkPHENOTYPE OF PROGENY k〉

where all ri are positive real numbers such that
∑k
i=1 ri = 1. As already stated

the number k of phenotypes must not be identified with the number n of off-
spring in general. In our schema the second level therefore may be filled in as
follows.
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Between these two observational levels there is a natural relation: each genetic
individual has its unique phenotype. This correspondence in the model is repre-
sented by a function APPEARANCE which assigns to each genetic individual,
whether parental or offspring, its phenotype. Thus we have equations

APPEARANCE(PARENT 1) = PHENOTYPE 1
APPEARANCE(PARENT 2) = PHENOTYPE 2
APPEARANCE(PROGENY i) = PHENOTYPE OF PROGENY j

(i ≤ n, j ≤ k).

A complete picture of the observational part of the model now has the form
shown in figure 2-4. The upward arrow at the right represents the way in
which the distribution of phenotypes is determined: we look at the value of
MATOR(PARENT 1,PARENT 2), that is at the set of offspring. We look at
the value of APPEARANCE(PROGENY i) for i ≤ n, that is at the phenotypes
occurring in the offspring. We count the total number of offspring as well as
the number of offspring showing a given phenotype, and calculate the relative
frequency of this phenotype. Obviously, this yields a precise definition of the
corresponding distribution of phenotypes which for given forms of MATOR and
APPEARANCE can be mechanically evaluated. DISTRIBUTOR may be de-
fined accordingly. For two given phenotypes, we may use APPEARANCE in
the reverse direction to obtain the parents, and from there go to the right and
upward to obtain the desired function value. On the parental side APPEAR-
ANCE may be reversed easily because of the small number of genetic individuals
involved.
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We turn now to the third, theoretical, level. At this level we meet of course
the most interesting genetic terms: ‘factor’, ‘gene’, ‘locus’. These refer to theo-
retical entities which are held responsible for the occurrence of particular phe-
notypes, traits and expressions. We use the label GENO-
TYPE to cover all these special entities. The straightforward idea is to think of
genotypes as the causes of the phenotypes. This idea, however, faces difficulties
from two sides. In general, the notion of cause and effect is a difficult one. Only
recently there has been some development in probabilistic terms that might be
applicable to genetics (but has not been applied as yet).24 On the other hand,
the relation between particular causes and effects -if they can be unravelled at
all- in the case of genetics will turn out to be extremely complicated in general.
When some difference in phenotype can be traced back to depend on a single
peptide in the chromosome, matters are comparatively simple. Indeed most of
the observable mutations of Drosophila melanogaster have been determined sat-
isfactorily. When, however, more than one cause is involved, matters are more
difficult, although not impossible. Thus, the minute bristle mutation appears
on all four chromosomes of Drosophila melanogaster. The difficulty is techni-
cal rather than conceptual, and involves demarcing several causes for a single
effect. In order not to enter into the philosophy of cause and effect25 we will
avoid causal terminology anyway.

There is a genotype for every phenotype. At the horizontal level we therefore
have again two parental genotypes, denoted by

GENOTYPE 1 and GENOTYPE 2

and finitely many genotypes for the offspring, one for each phenotype occurring:
24See (Suppes, 1970).
25The reader interested in such questions is referred to (Mackie, 1974).
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GENOTYPE OF PROGENY 1,...,GENOTYPE OF PROGENY s.

The transition from parental genotypes to genotypes of progeny is represented
by a function COMBINATOR which to any two parental genotypes assigns a
combination or mixture of genotypes of progeny. Analogous to the situation
with phenotypes, a quantitative, probabilistic element is needed. However, we
can no longer talk about relative frequencies here because we are now on the
theoretical level and in general things cannot be directly observed. Instead of
relative frequencies we now speak about probabilities proper. The distinction is
in certain respects one between experimental and expected probabilities. How-
ever, there are many applications where the relative frequencies from earlier
experiments are used as a data-base for the estimation of the expected proba-
bilities. A distribution of genotypes may be regarded as a genetic distribution
as in the case of phenotypes, i.e. as a function assigning numbers (‘weights’) to
the genotypes. Ordering the finitely many genotypes in a sequence

〈γ1, ..., γs〉

we may represent such a function by a similar sequence

〈α1, ..., αs〉, αi ≥ 0,
∑
αi = 1

which often is written in the form 〈α1γ1, ..., αsγs〉 in order to make explicit the
underlying ordering of the genotypes. A distribution of genotypes conveys the
information that the genotypes γ1, ..., γs are expected to occur in the progeny
with probabilities α1, ..., αs, respectively. COMBINATOR thus takes the form

COMBINATOR(GENOTYPE 1,GENOTYPE 2) = 〈α1γ1, ..., αsγs〉 =
〈α1GENOTYPE OF PROGENY 1,...,αsGENOTYPE OF PROGENY s 〉

and the boxes on the third level may be filled in accordingly.

Fig.2-5
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There is a sharp difference between COMBINATOR and DISTRIBUTOR. The
latter is observational, its function values are determined by direct empirical
means, and anyway without recourse to the validity of particular genetic hy-
potheses. COMBINATOR, on the other hand, is a theoretically defined con-
struct. In each non-trivial application COMBINATOR will be given by a theo-
retical definition which represents the particular hypothesis of how the genotypes
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are transmitted in the system considered. On the other hand, there is of course
a close connection between the two: COMBINATOR is a kind of theoretical
image of DISTRIBUTOR.

An easy example of COMBINATOR in the Mendelian case is this. Take
GENOTYPE 1 to be of the form AABB, GENOTYPE 2 of the form aabb.
Then COMBINATOR(AABB, aabb) = 〈1/16AABB, 1/16AABb,
..., 1/16aabb〉. When we look for examples for COMBINATOR in molecular ge-
netics, however, we are disappointed. The overall impression is that, although
molecular geneticists have studied the relationship between genotype and phe-
notype in ever increasing depth, they have neglected COMBINATOR. Possibly,
there is the assumption that COMBINATOR at the molecular level represents a
random process. Present thinking is, however, that this process is under genetic
control, and it remains a major programme that the biochemistry of COM-
BINATOR be investigated. It should be stressed that use of the techniques of
relative frequency measurement, as per transmission genetics, do not satisfy this
programme. Even if the loci and characters are described in biochemical terms
this is not sufficient to provide a molecular genetical version of COMBINATOR,
although this would be necessary.

It would be too simple to say that genotypes are purely theoretical con-
structs. Historically, this view might perhaps be defendable for the beginnings
of transmission genetics. In the early stages the factors were indeed hypothet-
ical for there was no knowledge of their material basis. After the detection of
chromosomes and their part in the transmission of hereditary traits in the first
decades of the twentieth century, this hypothetical status became ever more ac-
cessible. Today the genotypes in some applications have a status as empirical as
anything, and these triumphant applications of course yield credit to their exis-
tence in other cases which are still not entirely cleared up. The main reason for
this process of getting ‘less and less hypothetical’ is the development of different
independent means of access. Whereas originally the only access to genotypes
was via hypotheses about the number and kind of genotypes involved and about
the form of COMBINATOR, the situation after that steadily improved and to-
day there are various means of access to genotypes such as electron microscopy,
radiography, or restriction endonucleases. In this respect genetics shares com-
pany with very few distinguished mature natural sciences such as chemistry and
quantum mechanics. The same story does not yet apply to COMBINATOR.
Although many stable phases in meiosis are known the present view is that the
nature of meiosis as a random process needs further investigation.

From these considerations it follows that the distinction used above between
theoretical and observational level, in fact, is very fuzzy. If genotypes were
unobservable in the early 19th century they certainly are observable now. So
‘theoretical’ entities may turn into ‘observables’. One might say that ‘artefact’
becomes ‘fact’. We are fully aware of the fuzziness of this distinction, and we
do not want to base any important conclusions on it.

The vertical connection between levels one and two was already established
by APPEARANCE. It remains to connect level three (of genotypes) with the
other parts of the model. Most naturally this is achieved by relating genotypes
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and phenotypes. As already mentioned the relation between a genotype and a
corresponding phenotype may be very complex. A genotype may empirically
consist of several parts of the chromosome or the DNA which all ‘work together’
in order to produce some phenotype, while in the absence of any part the phe-
notype will not occur. Nevertheless, we may assume that one genotype is not
involved in the production of several different phenotypes. This is an analytic
statement concerning the notion and choice of phenotypes rather than an em-
pirical assumption. We use a function DETERMINER to assign phenotypes
to genotypes. The label indicates the ‘causal’ direction: genotypes determine
phenotypes but not the other way round. Note that a given phenotype may
happen to be determined by several different genotypes, so DETERMINER in
general will not be one-one. This is why we chose different numbers, k as the
number of phenotypes, and s as the number of genotypes. In general k will be
smaller or equal to s. We write

DETERMINER(GENOTYPE i) = PHENOTYPE j ,i ≤ s, j ≤ k

with appropriate indices. DETERMINER can be applied before and after mat-
ing so that we now can complete the schematic drawing which represents the
overall structure of our model. It has to be noted that the picture does not
represent the model in a complete way. What is missing in the picture are the
genetic hypotheses required of the various objects and operators. The full model
comprises the entities shown below plus the hypotheses postulated for them.

Fig.2-6

��

��

��

��

HH

HH

HH

HH

��

��

��
HH

HH

HH
�
�
�
�
��

6
PHENOT-1
PHENOT-2

DISTRIBUTOR
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On the right hand side we cannot draw the arrows for DETERMINER and
APPEARANCE in the same orderly way as on the left hand side because the
mappings need no longer be one-one. Different progeny may have the same
phenotype, and the genotypes produced by COMBINATOR may be more in
number than the phenotypes observed (which would be a strong argument of
course against the hypothesis underlying that particular COMBINATOR). We
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have inserted dotted arrows in order to show the operation of DETERMINER
and COMBINATOR more concretely.

We are now in a position to state an ‘abstract’ empirical claim associated
with the model; ‘abstract’ because no special hypotheses about the number and
kind of genotypes and the forms of COMBINATOR and DETERMINER are
presupposed; these are left unspecified. As said before, the two lower levels
really belong together since all items occurring are observational in the same
way. In particular, DISTRIBUTOR can be defined if we know how the parental
phenotypes are related to the two parental individuals (usually this knowledge
is trivial). What is happening essentially, in the observational part of the model
is that distributions of phenotypes are produced out of parental pairs of phe-
notypes. Using π∗1 , π

∗
2 and π1, ..., πk as variables for parental phenotypes and

phenotypes of offspring, respectively, we may write

DISTRIBUTOR(π∗1 , π
∗
2) = 〈r1π1, ..., rkπk〉.

On the theoretical level this schema is ‘replicated’ by COMBINATOR for geno-
types instead of phenotypes. By using γ∗1 , γ

∗
2 and γ1, ..., γs as variables for

parental genotypes and genotypes of progeny, respectively, we may write

COMBINATOR( γ∗1 , γ
∗
2 ) = 〈α1γ1, ..., αsγs〉

The empirical claim associated with the model now is this:

(1) If the parental genotypes fit with the parental phenotypes then the distri-
bution of genotypes produced by COMBINATOR will fit with the distri-
bution of phenotypes given by DISTRIBUTOR.

This statement may be read as an axiom holding true for genetics in general
and thus as the basic axiom of genetics. Fit at the parental side is given by
DETERMINER. Parental genotypes fit with genotypes of progeny just in case
the latter are the function values of the former under DETERMINER:

DETERMINER(γ1) = π1, DETERMINER(γ2) = π2.

Of course, the special form of DETERMINER may be a matter of some theoret-
ical depth involving, in particular, statistical considerations but such statistical
considerations are not present prima facie. What is interesting is the fit in the
model on the side of progeny. Here, statistical means come into play straight-
forwardly. We say that two genetic distributions 〈α1γ1, ..., αsγs〉 of genotypes
and 〈r1π1, ..., rkπk〉 of phenotypes fit with each other iff

i) the numbers k and s are identical
ii) each phenotype πi arises from some genotype γj by means of DETER-

MINER
iii) the probability coefficients of the items related under ii) fit with each

other.
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This definition may be visualized if we agree on an appropriate ordering of the
γ′s such that DETERMINER(γi) = πi. Fit of the two distributions is then
given by arrows from the genotypes to the phenotypes, and by corresponding
arrows (drawn dotted in Figure 2-7 below) between the coefficients.

Fig.2-7
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Statistics is then involved in the fit of the coefficients. Once the order as shown
in Figure 2-7 is present we may regard the coefficients α1, ..., αs to represent a
theoretical distribution, a ‘curve’, and the relative frequencies r1, ..., rk as ‘data’
to be fitted with the curve according to some statistical procedure. Still more
simply we may just compare the ‘distances’ | αi − ri | and require them not to
exceed some given ε. The latter method is very crude if the choice of ε is not
made dependent on the shape of the distribution of the γ’s.

The question of goodness of fit has two aspects. First, the choice of a suitable
hypothesis about the distribution of COMBINATOR from those allowed by the
particular theory. Second, the ability to subsume the empirical data under
the given hypothesis to a pre-determined level of accuracy. As an illustration
of the latter, consider the following example (Elandt-Johnson, 1971).26 The
segregation ratios at the Ag-B locus in cats differs from the Mendelian ratios
1:2:1 in intercrosses B′B4×B′B4. The main blood group locus in cats is called
Ag-B, with which several alleles are associated. The deviations from Mendelian
ratios are shown in that

Fig.2-8 GENOTYPE BB’ B′B4 B4B4

observed frequency (ri) 58 129 13
expected frequency (αi) 50 100 50

After having chosen a suitable ε we may apply, say, a χ2-test to these data,
and see whether the χ2-value is within the limits of ε. In the present case, an
ε which does not yield rejection of the underlying Mendelian hypothesis would
have to be greater than 37, so the hypothesis of simple Mendelian ratios must
be rejected. Clearly, the more traits involved, the greater the necessity of some
form of statistical analysis such as the above becomes.

A little reflection about the empirical claim just described reveals that this
claim is not entirely empirical for the theoretical parts of the model, GENO-
TYPES, COMBINATOR and DETERMINER, are assumed as given when the

26(Elandt-Johnson, 1971).
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claim is formulated. However, in most applications these components have a
hypothetical status, and therefore the claim depends on the corresponding hy-
potheses. If the claim for a given set of GENOTYPES, COMBINATOR and
DETERMINER turns out as untenable because the ε needed to produce a fit is
too big, another such set may provide a more satisfactory fit and thus a more
tenable claim. The question of which set of theoretical entities should be taken
is a difficult one. Up to now no readily useable criteria have been put forward
for such choice of theoretical entities (if we ignore abstract, purely philosphical
accounts). The range of possibilities for the three items under consideration
is in principle infinite for a given observational part of the model. This infin-
ity is restricted in practice by the formulation of special hypotheses, special
laws, about the kind and number of genotypes and the mathematical forms of
COMBINATOR and DETERMINER. Even such special laws are often not suf-
ficient to determine the theoretical components uniquely. Noteably in the case
of Mendel’s laws, which provide an explicit definition of COMBINATOR there
are some degrees of freedom left for the choice of genotypes and of DETER-
MINER. Leaving Mendel’s law untouched we may obtain quite different results
by variation of GENOTYPES and DETERMINER.

If there is no unique choice of theoretical components as prescribed by the
observational part of the model, which set of theoretical terms should we take in
order to state the empirical claim? The standard answer to this question given
in philosophy of science27 is: an arbitrary set from the range of possibilities
admitted by the model. This prescription amounts to reducing the empirical
claim (1) above to an existential claim.

(2) For any given intended system there exists some set of theoretical compo-
nents which, added to the observational part of the corresponding model,
yield a claim of the form (1) with satisfactory measures of fit.

Such a claim may be trivial if the requirements imposed by the model on the
theoretical terms are weak. The existence of suitable theoretical parts might
then even be provable with pure logic. In fact, this is the case for the model
presented here in many cases where there are no data about COMBINATOR
and few data about DETERMINER. However, we do not have to abandon the
model for that reason as trivial. Recall that this model is intended as a core-
model to be applicable in all intended systems of genetics. Core-models in
other disciplines yield claims of the same trivial kind, for instance in classical
mechanics, or in phenomenological thermodynamics.28 From the core-model we
may easily obtain specialized models by means of imposing further hypotheses
intended to apply to a small subset of intended systems (like Mendel’s laws, or
the Watson-Crick model of the double helix). These special models usually yield
non-trivial empirical claims of the form (2), and this is why the label ‘empirical
claim’ seems to be justified even in the trivial case of the core-model.

27Compare, for instance, (Stegmueller, 1986), Chaps.1 and 2.
28See (Balzer, Moulines, Sneed, 1987), Chaps.3 and 4 for details about the examples men-

tioned.
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In order to bring out the non-triviality of special laws let us consider the
simplest case of a diploid Mendelian application to one character difference,
say, between phenotypes p and P . In this case the following hypotheses have to
be added to the core-model.

i) There are exactly two kinds of ‘factors’ A, a such that each
GENOTYPE γ is a pair of two such factors (e.g. γ = 〈A, a〉 )

ii) DETERMINER assigns phenotype P to one of the genotypes with
identical components (say, to 〈A,A〉 ), and p to any other
genotype

iii) COMBINATOR for any two parental genotypes produces all possible
pairs of factors from the factors present in the genotypes and
weighting them equally with 1/4 (e.g. COMBINATOR(〈Aa,AA〉) =
〈1/4AA, 1/4AA, 1/4aA, 1/4aA〉).

Clearly, the GENOTYPES as well as COMBINATOR and DETERMI-
NER are uniquely determined by these requirements (up to renaming of the
factors). So in a special model for which requirements i)-iii) hold there is not
much room for the choice of theoretical components and therefore the existen-
tial claim (2) above loses its triviality. In fact, the claim in this special case
reduces to the claim that the theoretical terms as determined by i)-iii) fit with
the observational part of the model, in particular with the distribution of phe-
notypes. It is intuitively clear that this claim is true or false according to what
the observed frequencies in the distribution of phenotypes look like. This claim,
obtained from the abstract claim (2) above by filling concrete hypotheses into
our core-model, is a strong, empirically refutable claim indeed.

On the basis of the core-model we may define other concepts important
for genetics. The fact that these do not occur as primitives in the model has
no bearing on their importance. The choice of primitives for a theory has a
large range of conventionality. Of course, one would not take minor concepts
as primitives. Once a sufficient basis of primitives is at hand all other terms of
the theory should be definable. The point of reducing the number of primitives
is that in this way the number of basic hypotheses is also reduced and thus
the theory or the model becomes more perspicuous and compact. With respect
to definability the situation is similar to that of empiricity. Usually, a new
term cannot be defined in the core-model because its definition affords further
assumptions which hold only in special cases. So the definition of various genetic
terms will go together with the introduction of corresponding assumptions.

The term ‘gene’ has been much discussed in the history of genetics.29 Con-
sider the following definition. A gene is a materially identifiable entity that
determines the expression of a trait in the phenotype. This definition can be ac-
comodated by our model if we are generous with phenotypes. If the phenotypes
are taken to be just different expressions of one trait then genes as just defined
are just genotypes. For each gene (genotype) by means of DETERMINER, in
fact, determines one expression (phenotype) of the trait under consideration.

29See Carlsson (1966) for a good survey.
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Though not very subtle, this way of proceeding agrees with real application,
for instance, Watson and Crick30 say ‘The various traits are controlled by pairs
of factors (which we now call genes), one factor derived from the male parent,
the other from the female. For example, pure breeding strains of round peas
contain two genes for roundness (RR) whereas pure breeding wrinkled strains
have two genes for wrinkledness (rr).’ This is a typical use of the term. It was
as readily employed to signify chromosomal features and nucleotide sequences.

In general, the definition of ‘gene’ stated above requires more subtle treat-
ment in terms of our model in order to fit more generally with real applications.
Given our frame, the general case that may occur is this. One phenotype in
the model may represent a complex of expressions of different traits, and one
genotype may analogously represent a collection of materially identifiable enti-
ties. In this situation we cannot take the whole genotype as a gene. Also, if the
atomic components of the genotype cannot be uniquely related to the different
traits and their expressions in the phenotype, we cannot take these atomic com-
ponents as genes. The situation then depends on the form of DETERMINER.
If DETERMINER is such as to relate clusters of material parts of chromosomes,
i.e. their representatives in the genotype, into clusters of expressions in a way
not further decomposable, it seems inadequate to talk about genes in the sense
of the definition stated previously.

These considerations indicate the circumstances in which we may talk about
genes, that is, in which the term may be defined by means of our model’s prim-
itives. The circumstances are represented by a specialization of our model. We
say that, in a given model, DETERMINER is decomposable iff DETERMINER
can be written as a tuple

〈 DET 1,...,DET r〉

such that each DET i maps a well specified part of the genotype, which is the
argument of DETERMINER, on exactly one ‘part’ of the phenotype such that
the phenotype is just the combination (the tuple) of these parts. More precisely,
decomposability may be defined as follows.

DETERMINER is decomposable iff there exist sets P1, ..., Pr,
G1, ..., Gs, sets of indices Ji = {j(i, 1), ..., j(i, σ(i))} for
i = 1, ..., r, and functions DET 1,...,DET r such that

1) each phenotype π can be represented in the form π = 〈p1, ..., pr〉
with p1εP1, ..., prεPr

2) each genotype γ can be represented in the form γ = 〈δ1, ..., δs〉
with δ1εG1, ..., δsεGs

3) the set {1, ..., s} of indices is the same as the union of all
the sets Ji, i ≤ r: {1, ..., s} = ∪{Ji/i ≤ r}

4) for all i ≤ r: DET i maps genotypes into elements of Pi
5) for all i ≤ r: DET i properly depends exactly on all its

arguments with indices j(i, 1), ..., j(i, σ(i))

30See (Crick and Watson, 1953).
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6) for all genotypes γ:

DETERMINER(γ) = 〈 DET 1(γ),...,DET r(γ)〉

That is, each phenotype has the form of a tuple 〈p1, ..., pr〉 consisting of ‘com-
ponent phenotypes’. Each set Pi may be regarded as representing a trait, and
the elements piεPi as expressions of this trait. Each genotype consists of a
tuple 〈δ1, ..., δs〉 of ‘component genotypes’. Each sequence 〈j(i, 1), ..., j(i, σ(i))〉
picks out the indices of those components of 〈δ1, ..., δs〉 on which DET i actu-
ally depends, and by 4), DET i maps the genotype with these components into
expressions of the trait Pi.

Now consider the class of models in which DETERMINER is decomposable.
This class clearly is a subclass of the class of all possible models. In it, we may
define a gene as a combination

〈δj(i,1), ..., δj(i,σ(i))〉

of genotype components which are arguments on which one of the ‘component
determiners’ DET i depends. Note that this definition allows for material genes
which are spread out spatially, i.e. which are located at different sites on the
chromosome. Still, since they only determine one expression when taken to-
gether they are a proper unit to be called a gene according to the definition we
started with. On the other hand one is tempted to insist that one gene should
determine just one expression of one trait. Apparently, this is the conventional
definition. In principle, however, we may choose the structure of phenotypes
appropriately in different applications, to use ‘expressions’ and ‘traits’ in the
model as representing rather complex traits in the real system.

The above definition of gene is not entirely simple, though the idea is easy to
grasp. We believe that this fits well with the fact that this notion was disputed
for a long time, and still is today.31

Another important derived notion is penetrance as defined by the proportion
of genotypes that shows one expected phenotype. As in the case of ‘gene’ this
notion cannot be immediately be defined in our model; recurrence to further
specification of the model is needed. We have to use a function which assigns
genotypes to genetic individuals directly. If φ is such a function, i.e. a function
of the format given by the expression φ(x) = γ (where x stands for a genetic
individual and γ for a genotype), we may define the penetrance of genotype γ
with respect to phenotype π as (the number of genetic individuals having geno-
type γ as stated in terms of φ and phenotype π) over (the number of genetic
individuals having genotype γ), or formally (with |z| denoting the cardinality
of set z):

PENETRANCE(γ/π) = |{x/φ(x)=γ and APPEARANCE(x)=π}|
|{x/φ(x)=γ}|

31See (Kitcher, 1982) for a discussion of the problems with the concept of gene. Though
his view of the structure of genetic theory is very different from ours, his account of these
problems is largely independent of that view.
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Expressivity as the degree to which a particular effect is expressed in genetic
individuals can be defined by reference to a refinement of APPEARANCE. If
PHENOTYPES are assumed to be tuples of expressions of traits, a scale may
be introduced on each trait ordering the expressions of that trait with respect
to various degrees. Expressivity of a trait in a genetic individual then is the
value of the scale corresponding to that trait for the individual considered.

Pleiotropism as the multiple phenotypic effect of a single gene may be easily
defined by refining PHENOTYPES, GENOTYPES and DETERMINER in a
suitable way. Roughly, we may proceed as above in connection with genes but
take the ‘component phenotypes’ pi to represent the multiple effect under study.
So pi will not be one expression of one trait, but rather a set (or sequence) of
expressions of a multiplicity of traits.

Epistasis occurs when one gene pair causally screens the effect of another
one. We have to employ a counterfactual in connection with DETERMINER
in order to define this notion. Consider two genes g, g∗ of the form introduced
above which are both part of some GENOTYPE γ. Then g screens g∗ with
respect to phenotype π iff:

i) DETERMINER(γ) = π
ii) if g in γ would be replaced so that the resulting

genotype was γ′ then DETERMINER(γ′) = π.

We leave it to the reader to produce similar accounts for the various notions of
dominance to be found in the literature.

From a formal point of view the model introduced is still ambiguous as
far as the numbers of genetic individuals is concerned. Of course, we do not
want to restrict it to a particular number of, say, offspring. What has to be
clarified, however, is the number of different matings captured by the model
(whether on the level of populations or of individuals). As we left this feature
somewhat undecided (deliberately) the impression might have been created that
each model just covers exactly one process of mating with subsequent creation
of offspring. This is certainly the main case of application. The model does not
rule out, however, more complex applications in which more than one mating
is considered in one and the same model. The reason for keeping such a level
of generality is found in later applications in the context of population genetics
proper. There, the formalism of genetic algebras is best suited to describe
transitions from a definite number of parental populations to the same number
of populations in progeny. The way our models are introduced allows for simple
incorporation of that algebraic formalism.

In Chap.4 we will make this explicit. In that context we will have to refer
to -and quantify over- the genetic individuals occurring in one model. In order
to avoid confusion it is good to have a description of the models paying more
attention to the numbers, and sets, of objects involved. We will state such
a description now which also satisfies the logicians search for completeness of
description. As stated earlier we do not take over the probabilistic notion of a
distribution: there is no use of the general features of σ-algebras here. As the
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reformulation is essentially a matter of terminology, we may be brief.
If X is a non-empty, finite set then by a Γ-distribution over X we mean a

function p : X → [0, 1] such that
∑
xεX p(x) = 1. [0, 1] here denotes the closed

interval of reals between 0 and 1. If the members of X are ordered in some
way, so that a list 〈x1, ..., xn〉 captures exactly all of X’s elements we may write
down the function values of a γ-distribution p over X in the same order

〈p(x1), ...,p(xn)〉 = 〈α1, ..., αn〉.

Above, the x’s were phenotypes or genotypes. For xi = GENOTYPE
OF PROGENY i, for instance, we wrote αiPHENOTYPE OF PROGENY i
in order to state that αi ‘belongs to’ GENOTYPE OF PROGENY i. In the
present, abstract notation the GENOTYPE OF PROGENY i are ‘swallowed’
by the distribution and reoccur as its arguments:

p(GENOTYPE OF PROGENY i) = αi,

so that there is no need to write them down additionally. The set of all Γ-
distributions over some set X we denote by D(X).

We introduce sets J, P, and G the elements of which are interpreted as
the genetic individuals, phenotypes, and genotypes occurring in the model, re-
spectively. Genetic individuals may be individuals proper or populations. The
variables i, π, and γ are used to range in these sets, respectively. So we write

i ε J, π ε P and γ ε G

to express that i is an arbitrary genetic individual, π is a phenotype, and γ a
genotype in the model. By X × Y we denote the cartesian product of the sets
X and Y , i.e. the set of all pairs 〈x, y〉 with x ε X and y ε Y , and by Po(X)
the power set of X.

For a phenotype π ε P and a set of genetic individuals X ⊆ J we define the
relative frequency of π in X, RF (π/X), as follows.

If X is a set of proper individuals then
RF (π/X) = (the number of i ε X such that APPEARANCE(i) = π)

over
(the number of elements of X)

and
if X is a set of populations then
RF (π/X) = (the number of elements in the sets i ε X for which

APPEARANCE(i) = π)
over
(the number of elements in members of X).

A model of genetics is a structure of the form

〈J,P,G,APP,MAT,DET,DIST,COMB〉 which satisfies the
following requirements:
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A1 J, P and G are non-empty, finite sets, and pairwise disjoint
A2 APP: J → P
A3 MAT: J × J → Po(J) is a partial function
A4 DET: G → P is surjective
A5 DIST: P × P → D(P) is a partial function
A6 COMB: G × G → D(G)
A7 for all i, i′ ε J such that MAT is defined for 〈i, i′〉 and for all π ε P:

DIST(APP(i),APP(i′))(π) = RF (π/MAT(i, i′))

A8 for all i, i′ ε J such that MAT is defined for 〈i, i′〉 and for
all γ, γ’ ε G such that DET(γ) = APP(i) and DET(γ’) = APP(i′),
and for all γ∗ ε G:

COMB(γ, γ’)(γ∗) ≈ε DIST(DET(γ),DET(γ’))(DET(γ∗))

APP, MAT, DET, DIST, COMB here denote the previous operators AP-
PEARANCE, MATOR, DETERMINER, DISTRIBUTOR and COMBINATOR.
MATOR and DISTRIBUTOR are required to be partial functions only, i.e. they
need not be defined for all possible arguments. MATOR should be undefined
for pairs 〈i, i′〉 which do not mate. Such pairs necessarily occur in the model,
namely among the offspring. DISTRIBUTOR similarly needs not be defined for
pairs 〈π, π′〉 which do not correspond to mating genetic individuals. One might
of course insist that DISTRIBUTOR should be defined for any two pheno-
types without consideration of whether these correspond to genetic individuals
mating or not. However, this is not in line with our interpretation of distribu-
tions of phenotypes as determined by observed relative frequencies in progeny.
If DISTRIBUTOR were defined for all pairs of phenotypes DISTRIBUTOR
would represent a kind of law or law-like connection in the phenotypes. Such
a law should be present only at the level of genotypes, however, and this is
why COMBINATOR in A6 is required to be a full function. A7 is the explicit
definition of DISTRIBUTOR in terms of relative frequencies, and A8 the basic
axiom stating that theoretical frequencies of genotypes as produced by COM-
BINATOR should coincide -at least approximatively up to a given ε - with
those observed in progeny as expressed in the corresponding function value of
DISTRIBUTOR. Axioms A7 and A8 may be read as stating equalities and ap-
proximative equalities of genetic distributions. If we write down the relative
frequencies RF (π,MAT(i, i′)) in the order of the corresponding phenotypes we
obtain a Γ-distribution which may be called the distribution of frequencies. A7
then states that the distribution of frequencies is the same as that given by
DISTRIBUTOR. A8 states that the distribution of genotypes, COMB(γ, γ′)
is approximatively the same as the corresponding distribution of phenotypes
DIST(DET(γ),DET(γ′)).

The two kinds of applications mentioned above, those covering just one or
more than one mating, now can be distinguished by looking at the domain
of MATOR, Domain(MATOR), i.e. the set of all pairs 〈i, i′〉 for which MA-
TOR is defined. If the model describes just one mating the domain of MATOR
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will contain just one pair of genetic individuals. Whether this is so or not
we leave open to decide in each particular application. At the level of model
construction we might of course consider the corresponding axiom stating that
Domain(MATOR) contains only one pair. This axiom added to A1-A8 char-
acterizes a special subclass of models, the difference between this and the full
class of models marking the way in which the general models of A1-A8 extend
the former.
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Chapter 3

Genetic Kinematics

Kinematics is the description of change over time. The general model intro-
duced in the previous chapter is a static model, or better, a quasi-static one.
Development in time is covered only in the rudimentary form of one transition
from parents to progeny.

The model may be -and has to be- extended to cover kinematical features
in two different ways. The first area in which a kinematical model has to be
superimposed is the area covered by DETERMINER. In modern genetics the
genotypes are no longer mere theoretical terms, and an important part of molec-
ular genetics deals with the transitions from DNA to amino acids and to en-
zymes. Here, a cyto-chemical model exists describing in detail how DNA gets
translated into RNA, and how RNA ‘constructs’ amino acids.32 However, if we
look at kinematics in a more narrow way to describe sequences in time of the
change of definite states of a system, the cyto-chemical model may not easily
pass as a kinematical model for it is difficult to identify an homogenous set of
‘states’ such that the changes may be described as transitions from one state
into another one. A proper kinematic model satisfying this condition might be
called a model of transition kinematics. We will not deal here with transition
kinematics for two reasons. First, the cyto-chemical basic processes are well
understood and are described now in every textbook. Second, as just noted,
the knowledge available is not yet sufficient to construct a homogenous model
of transition kinematics.

The second area in which a kinematical model has to be inserted in the basic
model of Chap.2 is the area covered by COMBINATOR. Here, too, modern
genetics has achieved detailed knowledge about how strands of DNA separate
and recombine during meiosis. In this area it is possible to describe the genetic
processes in the form of sequences of definite states so that a kinematical model
in the more narrow sense may be constructed. We call it a model of combination
kinematics for it deals with how parental DNA is combined during meiosis, and
subsequently is combined in fertilization. The model is intended to cover both
these stages: meiosis as well as possible combination in fertilization. Its main
area of application is of course to meiosis proper. A special case of particular
interest is that of recombination in the well known technical sense to which we
will turn below.

In the general model of the previous chapter, the genotypes have the status of
abstract, theoretical entities. The model itself does not imply that the γ’s have

32Compare (Strickberger, 1985), Sec.4 and 5, for example.
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to be interpreted by concrete material objects. Indeed, such a general approach
is necessary in order to cover the earliest genetic applications, for instance by
Mendel, in which ‘factors’ were used as mere theoretical, combinatorial means.

Part of the history of success in genetics was that these initially abstract
terms gradually became more and more concrete. As early as 1903, a connec-
tion was drawn by Sutton between the material in the cell which was thought
to be the basis of inheritance, and Mendelian factors. In the course of two
decades this connection proved valid; chromosomes were identified, and their
crucial role in mitosis and meiosis began to be investigated. From the outset,
chromosomes were postulated to function as the ‘causes’ of phenotypes and thus
to be material counterparts to Mendelian factors. The full causal chain leading
from some particular chromosomes to the complete phenotype is far from being
known, but there is enough evidence to show that variation in the chromosomes
implies variation in the corresponding phenotype. For instance, at a very early
stage it was clear that there were differences in chromosome content related
to sex determination. A comparison of the cytological and genetic maps for
the X-chromosome of Drosophila melanogaster was provided by Morgan and
Dobzhanski.33 The geometrical ordering of chromosomal features being iden-
tified with that of hypothetical factors as established from studies of relative
frequencies. Moreover, a great deal is now known on the structure of chromo-
somes. The strings of DNA making up the chromosomes are well known down
to their chemical composition for many important species, and in many cases
(like sickle cell anaemia) particular parts of the DNA have been shown to be
partial causes of certain definite traits.

Less is known about how and why the DNA molecules wind up, separate,
and join just the way they do in the different stages of meiosis. These phe-
nomena being a major issue in genetics at present, and very likely in the near
future, a model is desirable in which the change over time of configurations of
chromosomes and DNA can be described. Such a model we call a combination
kinematics. As the label indicates, the present task is just to describe how the
chromosomes change their configurations in time, and not to explain why they
do so. The latter task would afford a truly dynamical model in which the ‘forces’
responsible for the changes are made explicit.

In the present chapter we want to refine the previous model to include such
a combination kinematics. Since we want the refined model to be as general
as possible (to cover as much of genetics as possible) we do not bring the full
cyto-chemical machinery into play. Most recombination studies to-day do not
use cyto-chemical knowledge in a substantial way (the well known techniques of
chemical or radioactive labelling notwithstanding). In order to achieve a general
approach we use a more abstract terminology covering structure and change at
the level of chromosomes as well as at that of DNA.

On both these levels it is undisputed that we are dealing with material
objects of a lengthy form, made up of different material ‘parts’ which can be
separated. Essentially, the lengthy objects may be conceptualized as sequences

33See (Morgan and Bridges, 1916) and (Dobzhansky, 1932).
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of smaller kinds of objects. The objects of the type of sequences we call strands,
the objects making up those strands we call quanta. We do not go into further
details about the chemical composition of the quanta, nor about the particular
kinds of chemical bonds that may obtain between them. The only feature we
want to make explicit is that quanta are ordered in a certain sequence to form a
strand. Conceptually, this amounts to their forming a linear order with respect
to some order relation <. A linear order consists of a set Q (in our case a set of
quanta) and a binary relation < on this set which satisfies the axioms AO1-AO3
below. Using q, q′, q′′ as variables for quanta we may write:

q < q′ (‘q is smaller than q′’, or ‘q comes before q′’).

The axioms characteristic for a linear order are the following:

AO1 For all q, q′, q′′ in Q: if q < q′ and q′ < q′′ then q < q′′

(‘Transitivity’)
AO2 For all q in Q: not( q < q ) (‘Anti-reflexivity’)
AO3 For all q, q′ in Q: q < q′ or q′ < q (‘Connectedness’)

As we are interested only in strands composed of finitely many quanta, we may
define the notion of a strand as follows.

s is a strand iff s consists of a finite set Q and a binary
relation < on Q which is transitive, anti-reflexive, and
connected.

If s is a strand we say that q is a quantum of (or in s) if q is an element of Q. In
genetic context, a variety of interpretations of this notion are possible. At the
level of chromosomes, the quanta refer to identifiable features and banding of
the chromosome, the line of the chromosome, the <-relation refers to their order
on the chromosome, and the notion of a strand refers to the whole chromosome
or to some part of it (which actually may be quite short). At the level of DNA
quanta may be regarded as denoting the bases or the triplets of bases, < as
denoting their ordering along the DNA molecule, and a whole sequence of bases
in a molecule (or a part of such a sequence) would be a referent for the term
‘strand’. Note that under this interpretation of the term ‘quantum’ it is not
the whole DNA molecule (or a section of it) that forms a strand. Rather it
is ‘one half’ of the double helix (or a section of it) only, i.e. a sequence of
phosphodiester bridged bases.

We note that the notion of a linear order has weak implications only for the
topological form of a strand in space. A strand may have an arbitrarily complex
shape being wound up along different axes in whatever regular or irregular way.
The only constraints imposed by linearity are first, that the strand is connected,
not falling apart into separate sub-strands, and second, that it does not contain
any loops (one of its ends being connected to its other end). Also, nothing is
implied about the distances between the different quanta in a strand.
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As the set of quanta in a strand is supposed to be finite, it is easy to define
some natural concepts we use in talking about strands. For instance, each
strand has two ‘ends’ which may be defined as the unique minimal and maximal
quantum in the strand. The unique minimal quantum in s = 〈Q,<〉 is defined
as the quantum q in Q such that there is no other quantum q′ in Q smaller than
q (q′ < q), the definition of ‘maximal’ is analogous. Furthermore, we may define
the notion of two quanta being neighboured. If s = 〈Q,<〉 and q, q′ are quanta
in Q then q and q′ are neighboured (in s) if there is no q′′ in Q such that q′′ is
in-between q and q′ (i.e. q < q′′ < q′ or q′ < q′′ < q). Clearly, if we start with
the minimal quantum in s, proceed to its neighboured quantum, and iterate this
procedure we run through all the quanta of s in the order specified by <. The
unique number of steps needed in this process to reach some given quantum q
in s may be called the position of q in s. Thus if the position of quantum q in
strand s is n then q is the n-th quantum on the string, counted from the minimal
end of s. Of course, to start from the minimal end here is a mere convention, we
might as well start ‘from above’. As usual, we define ‘q ≤ q′’ as an abbreviation
for ‘q < q′ or q = q′’. It is easy to show that this relation again is transitive
and connected. It is not anti-reflexive, however. Instead, it is anti-symmetric,
i.e. from q ≤ q′ and q′ ≤ q it follows that q = q′.

Strands may be ‘cut down’ and concatenated. The first procedure yields one
or several sub-strands. We define sub-strands such that they consist of ‘con-
nected’ parts of the original strand from which they are formed. More precisely,

s∗ is called a sub-strand of a strand s = 〈Q,<〉 iff
there exist Q∗, <∗ and quanta q, q′ in Q such that
i) Q∗ is the set of all quanta q∗ such that q ≤ q∗ ≤ q′
ii) <∗ is the binary relation defined on Q∗ by:
for all q1, q2 : (q1 <∗ q2 iff q1 < q2)
iii) s∗ = 〈Q∗, <∗〉.

Obviously, any sub-strand of a strand again is itself a strand. By the concate-
nation of two strands we mean the new strand which is obtained by putting
together the given strands at two of their ends. We agree to put together the
maximal end of the first with the minimal end of the second. Thus the con-
catenation of two strands s = 〈Q,<〉, s′ = 〈Q′, <′〉 which we denote by s ◦ s′ is
defined as s∗ = 〈Q∗, <∗〉 where Q∗ is the union of Q and Q′, and <∗ is defined by

for all q, q′ in Q∗:
q <∗ q′ iff either q, q′ are both in Q and q < q′

or q, q′ are both in Q′ and q <′ q′

or q is in Q and q′ is in Q′.

The concatenation of two strands can be shown to be a strand, too. The genetic
content of an individual being composed of several chromosomes we have to use
at least a set of strands as representing a genotype as occurring in the general
model. A mere set of strands, however, is not suited as a basis to describe the
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structure and change of strands. A combination kinematics that deserves this
label has to include at least some means of describing the spatial configurations
of the different strands making up one genotype. Since these spatial configu-
rations are of great complexity, a correspondingly general notion is needed for
their representation. In general, the easiest way to describe such configurations
is by mapping them into three dimensional space. Although in special appli-
cations such mappings may be replaced by more efficient representations, in
general they are not. We therefore define a configuration of strands to consist
of a finite set N of strands, and a mapping ψ which to each quantum in each
of the strands assigns a position in three dimensional space IR3. The function
ψ we call position function for it assigns a position to each quantum. In other
words a configuration of strands may be described as a list C:

C = 〈N , IR3, ψ〉

where N is a finite set of strands, each s in N being of the form s = 〈Qs, <s〉
described above, IR3 denotes the set of 3-dimensional vectors of real numbers,
and ψ is a mapping assigning to each quantum in each set Qs a vector in IR3 as
its position. We write

ψ(q) = 〈α1, α2, α3〉

and we call ψ(q) q’s position (in the configuration of strands C). It has to be
excluded, of course, that different quanta in one configuration C get assigned
the same position. More realistically, we have to take into account that the
quanta have some extension in space, and therefore their positions must have
certain minimal distances from each other. Thus we require the following axiom
for configurations.

(*) There is some real ε > 0 such that for all quanta q, q′ in strands of C, if
q = q′ then |ψ(q)− ψ(q′)| ≥ ε.

It is easy to show that any subset of strands taken from the set N of strands of
a configuration of strands again yields a configuration of strands, provided the
position function ψ is restricted to the quanta occurring in the strands of that
subset. Any such configuration we call a sub-configuration of the initial one.
The number ε in (*) has to be given externally, and will vary from application
to application.

The notion of a configuration of strands on the one hand is simple enough for
easy application, on the other hand it seems rich enough to express all kinds of
configurations actually occurring in genetics. Of course, it does not comprise all
kinds of genetic concepts used in connection with combination kinematics, like
‘centromere’ or ‘chiasma’. It provides just a means of describing various (and
possibly complicated) structures of chromosomes and DNA, and thus provides
a basis for descriptions of the change of such structures over time, i.e. a basis
for combination kinematics.

A first step in refinement of the general model from Chap.2 now may be
performed by assuming that the genotypes occurring in the model have the form
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of configurations of strands. In other words, we require that each genotype γ, in
fact, is a configuration C = 〈N, IR3, ψ〉 of strands. Using the variables C,C ′, Ci
instead of γ, γ′, γi we may write the connection established by COMBINATOR
between genotypes of parents and progeny in the form

COMBINATOR(C,C ′) =
∑
i αiCi.

We note that this shift in notation by itself still does not commit us to inter-
pret the letters ‘C’ etc. as referring to material objects. We still may, if we
wish, interpret C just as an abstract factor or genotype. In such an abstract in-
terpretation the internal structure of configurations of strands, however, would
seem redundant. This indicates that the transition from the general models of
Chap.2 to the refined models we begin to describe here roughly corresponds to
the transition from transmission genetics proper (in which genotypes are just
abstract, theoretical terms) to a form of genetics in which genotypes have a ma-
terial (chromosomal,DNA) basis. In a way, this transition is analogous to that
from early chemistry (in which atoms function as abstract units of combinato-
rial analysis) to atomic physics (where the atom acquires a proper, ‘material’
status at the same time when it gets its internal structure).

A second step in refining the general model suggests itself after the first one
just described. On the basis of the notion of a configuration we may formulate a
principle of conservation of basic genetic material. The genetic material inherent
in configurations of strands are the quanta occurring in the different strands.
The principle of conservation amounts to a conservation of these quanta. In
other words, all the quanta occurring in strands of some configuration Ci of
progeny have to be taken from the quanta occurring in the two configurations
of the parents C,C ′, and conversely, all ‘parental’ quanta have to occur in
some configuration of offspring. Somewhat more formally, this principle may
be formulated as follows. Let C,C ′, C1, ..., Cn be configurations of strands such
that COMBINATOR(C,C’) =

∑
i = 1nαiCi. These configurations have the

form 〈N, IR3, ψ〉, 〈N ′, IR3, ψ′〉, 〈 N1, IR3, ψ1〉, ..., 〈Nn, IR3, ψn〉, respectively. Let
s be a variable ranging over the strands occurring in N,N ′, N1, ..., Nn, i.e. sεN∪
N ′∪N1∪...∪Nn. For arbitrary such s let Q(s) denote the set of quanta occurring
in s. The principle of conservation then states that the union of all sets Q(s)
with s in N or in N ′

{Q(s)/s in N or s in N ′}

and the union of all sets Q∗(s∗) with s∗ in N1 or...or in Nn

{Q∗(s∗)/(s∗ in N1) or...or (s∗ in Nn)}

are identical. Often this principle is not strictly satisfied, deletion may occur as
well as insertion. Mutation, which might be seen as a combination of deletion
and insertion, will also contradict that principle of conservation. Insertion does
not create a problem as long as the material inserted is present in the parental
genetic material. The set of quanta in progeny in this case is not enlarged
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by insertion. On the other hand, in the case of deletion the set of quanta
in offspring may get smaller. In order to deal with deletion a weaker form of
conservation stating that all quanta of offspring are included among the parental
quanta, has to be used. In other words, the principle says that {Q∗(s∗)/(s∗
in N1) or...or (s∗ in Nn)} is a subset of {Q(s)/s in N or s in N ′}. In the
following, we will understand the principle of conservation always in this weaker
form. The objection that mutation still provides counterexamples does not seem
convincing. Mutation does not provide intended systems for the basic form of
molecular genetics considered here. On the contrary: mutation transcends the
frame given by the present genetic theories. Its proper treatment is achieved in a
different theory, the theory of evolution. We certainly do not want to exclude the
theory of evolution from using elements of the genetic models presented here but
the phenomenon of mutation shows that the theory of evolution cannot simply
be regarded as a refinement of molecular genetics. These are two different
though closely related theories the proper relation of which is an important
subject but not treated in this book.

A model of genetics in which genotypes have the form of configurations of
strands, and which satisfies the (weak) principle of conservation of the basic
genetic material we call a model with material genetic basis. Such a model
will have to be used whenever the genetic material is analysed at the level
of chromosomes or at the finer cyto-chemical level. The unrefined model, on
the other hand, is restricted to cases in which COMBINATOR has an entirely
theoretical status.

Any model with material genetic basis already contains features of com-
bination kinematics. For COMBINATOR transforms parental configurations
of strands (representing sets of chromosomes) into those of progeny, that is,
COMBINATOR describes a kinematics of chromosomes. It does not seem sat-
isfactory, however, to identify combination kinematics with the refined models
with material genetic basis for two reasons. First, in contrast to the kinematical
situation in physics we cannot expect a deterministic function expressing how
parental configurations transform into those of progeny. Due to the probabilis-
tic features at the level of phenotypes we have to expect similar probabilistic
relations at the level of genotypes. Intuitively, we would like to reserve the label
of combination kinematics to models dealing with the transition from just one
pair of parental chromosomes to one definite chromosome of the offspring so
that the transition might be -in principle- clarified by future investigation to an
ever increasing degree. Ultimately, the picture we still have in mind is that of
some deterministic connection governing meiosis and fertilization. The model
thus contemplated, describing just one isolated transition of configurations of
strands, is compatible with the models with material genetic basis. Starting
from the equation

COMBINATOR(C,C ′) =
∑
αiCi

we may fix one particular Ci and consider the transition from C and C ′ to
Ci as giving rise to a more local ‘model of combination kinematics’. Under

49



this perspective a model with material genetic basis may be regarded as being
‘composed of’ n different such local ‘models of combination kinematics’.

A second reason to keep combination kinematics distinct from models with
material genetic basis is this. The most important application of combination
kinematics at the moment is to recombination which occurs during meiosis. As
this process does not involve the distinction between parents and progeny, the
models of combination kinematics also should be neutral with resepct to this
distinction. As it happens, the kinematics of recombination also has the form
of a transition from two ‘initial’ to one ‘final’ entity. In a model with material
genetic basis the initial entities are the parental strands, the final entity is a
strand occurring in progeny. Analogously, the two initial entities in recombi-
nation are two pairs of chromatids (in the diploid case), and the final entity is
the pair of chromatids resulting from these by recombination. In order to cover
both kinds of applications we have to avoid the terminology of parental strands
and strands in offspring and use a more abstract terminology. We simply will
speak of two initial configurations of strands, and one such final configuration.
In most recombination applications, the initial configuration consists of the four
strands making up two pairs of chromatids.

In order to obtain a precise definition of a combination kinematics, let us
reflect on what items necessarily have to be incorporated. First, as already men-
tioned, we have two initial configurations of strands forming an ‘initial state’,
and one such configuration as a ‘final state’. It is not difficult to take the two
initial configurations together to form one bigger common initial configuration
serving as the initial state. This ‘joining’ may be regarded as a purely conceptual
operation, and in no way affects the spatial positions of the quanta occurring in
the two strands. In recombination, we may conceptually put together the initial
pairs of chromatides, and still have the same spatial configurations as before.
In this way we have to deal with the transition from one initial to one final
state. Between these two states there is a sequence of transitional states taken
on during the process of recombination, meiosis, or fertilization. We cannot
say that there is a continuous transition from the initial state to the final one,
because phenomena like crossing over or deletion or insertion of genetic mate-
rial represent discontinuities. It seems better to consider a discrete sequence of
transitional states. Obviously, the order of this sequence is that of time. The
transition is a process in time which to some extent can be made directly visible.
We therefore should include a time interval, or at least a finite, discrete set of
instants, which are linearly ordered:

{t1, ..., tr} where t1 < ... < tr

and < is interpreted as ‘later than’. In meiosis as well as in recombination proper
the kinematic process involves a kind of reduction of the genetic material insofar
as the final configuration of strands represents only a part of the material present
in the initial configurations. In recombination this is due to the fact that only
two of the four chromatids take part in the exchange, in meiosis in general it is
due to the fact that the number of chromosomes is reduced by half. In abstract
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terms we may deal with this feature just by ignoring part of the initial strands;
those which are not involved in combination.

In recombination the process takes the following form. Initially two pairs of
strands of homologous DNA or the chromatids of which they are part, synapse.

Fig.3-1
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Chiasma formation, (cross-

ing over), then occurs (see Figure 3-2 in which only one chiasma is illustrated,
but many may occur).
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The structures then pull apart, thus forming two new genetic combinations (see
Figure 3-3).

Fig.3-3
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Anaphase of the first meiotic division then results in diploid cells of the geno-
types shown in Figure 3-4.
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Fig.3-4
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Finally the second (reduction) division occurs, giving four haploid germ cells of
the genotypes shown in Figure 3-5.

Fig.3-5
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In woman, the primary oocyte gives rise to only one mature gamete, the other
three ‘polar bodies’ degenerating, in man all four develop into mature gametes
from the primary spermatocyte.

Primary oocytes remain in prophase and do not finish their first meiotic
division before puberty is reached, then providing the germ line for the next
generation. After puberty, the mature oocyte divides again meiotically and if
fertilised it may produce a new individual. Progeny correspond to whichever
one of the four genotypes present after second division actually matured. Fer-
tilization may then occur between the spermatocyte and the oocyte, resulting
in the conjugation of chromosome content.

We may formulate a version of the conservation principle stated above so
that the quanta making up the final configuration have to be such as making up
a distinguished subset of the strands in the initial configurations. The subset
of strands distinguished in this way is the set of those involved in combination
while all other strands ‘are ignored’ in the sense of not contributing to the final
configuration.

As already noted it is convenient to join the two initial configurations to
form one bigger configuration. Conceptually, we may just take the union of the
sets of strands occurring in the two given configurations, and make sure that
the positions of the quanta do not conflict in the sense that two different quanta
from the two configurations do not get the same position. This situation might
in fact occur if the frames of reference in the two configurations were badly cho-
sen. We may avoid this situation by imposing a requirement on the two initial
configurations. We say that two configurations of strands C,C ′ are compatible
if the two ‘position functions’ ψ and ψ′ from C and C ′ assign different values to
any two different quanta. More sharply, we require that, for some given ε > 0,
for any two quanta q, q′ occurring in C and in C ′ respectively, |ψ(q)−ψ(q′)| > ε.
If two configurations C = 〈N, IR3, ψ〉, C ′ = 〈N ′, IR3, ψ′〉 of strands are compat-
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ible we define the union C t C ′ of C and C ′ by C t C ′ = 〈N∗, IR3, ψ∗〉 where
N∗ is the union of N and N ′, and ψ∗ is the union of ψ and ψ′. Using these
auxiliary definitions we now can define the notion of combination kinematics.

x is a combination kinematics iff there exist T,<,C, θ, C,C ′, C∗ and N0

such that
1) x = 〈T,<,C, δ〉
2) T is a finite set (T = {t1, ..., tr}) and < is a linear order on T

such that t1 < ... < tr
3) C is a set of r configurations of strands
4) θ is a function from T into C, and one-one
5) C,C ′, and C∗ are configurations of strands in C, and C,C ′ are

compatible
6) θ(t1) = C t C ′ and θ(tr) = C∗

7) N0 is a subset of the set of all strands occurring in C t C ′
8) each strand occurring in C∗ is a configuration of sub-strands

occurring in N0.

In other words, a combination kinematics essentially is a sequence C t C ′ =
C1, ..., Cr−1, Cr = C∗ of configurations of strands ordered in time by a function
θ such that the strands of the ‘last’ configuration are obtained from a subset
N0 of the ‘first’ configuration by ‘breaking them apart’ and concatenating the
parts anew. The intermediate transitions from C1 to C2 etc. are not specified
any further. They may just consist in a change of the positions of the different
strands and quanta relative to each other. Recombination proper, i.e. crossing
over, breaking, and re-concatenation of strands, will usually occur only at one
instant, it need not occur at all. The ‘mechanism’ according to which the
process takes place is not made explicit in this definition. At the moment, it is
not fully known. Its full description requires further items, like for instance the
centromeres.

We may consider three special cases of combination kinematics. First, the
regular case in which the final strands in C∗ are composed of parts of the strands
from N0 such that all the material present in the latter is used up.

x is a regular combination kinematics iff x = 〈T,<,C, θ〉 is a
combination kinematics with respect to C,C ′, C∗ and N0 and each
strand occurring in N0 is a concatenation of sub-strands of strands
occurring in C∗.

Among the regular combination kinematics there are those in which just whole
strands from N0 are combined with each other. Another important regular case
is that of recombination. The irregular cases may be divided into two further
classes. First, there are cases with deletion. In these cases not all the genetic
material, i.e. all the strands in N0 are used up in forming the strands of C∗.
During the process of formation of the strands of C∗ part of the original strands
in N0 are not used, i.e. they are deleted. We have to require in this case that
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no complete strands from N0 are ‘deleted’ entirely. That is, each strand in N0

at least contributes some sub-strand to those of C∗. Without this assumption
N0 might have been chosen ‘too big’.

x is a combination kinematics with deletion iff x = 〈T,<,C, θ〉 is a
combination kinematics with respect to C,C ′, C∗ and N0 and

1) x is not regular
2) for each strand s in N0 there is some sub-strand of s

occurring in a strand from C∗

The third case is that of insertion. Here, N0 has to be imagined as splitting up
into two parts, N+

0 and N∗0 where the material in N+
0 is completely used up in

the strands occurring in C∗ while the remaining strands, those in N∗0 , are not
entirely used up but provide material which is inserted in the formation of the
strands in C∗. The decisive point is that the number of strands occurring in
the final configuration is the same as in the set N0.

x is a combination kinematics with insertion iff x = 〈T,<,C, θ〉 is
a combination kinematics with respect to C,C ′, C∗ and N0 and there
exists a partition of N0 into two sets N+

0 and N∗0 such that
1) the number of strands in N+

0 is the same as in C∗

2) all quanta occurring in strands from N+
0 also occur in the

strands in C∗

3) for each strand s in N∗0 there is some sub-strand of s occurring
in a strand in C∗

It is known that deletion and insertion go together with particular, favourable
topological forms of the strands. Deletion may typically occur when a strand
contains a ‘loop-like’ sub-strand, i.e. a sub-strand the ends of which are very
close together in space. The precise causes of such phenomena however are not
fully understood yet -eventhough the chemical conditions under which strands
may join and break are.

Two textbook examples may serve to illustrate this model. Consider, first,
an abstract schema of recombination, say, of the form depicted in Figure 3-6
below.
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Fig.3-6
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Such a process may be modelled by taking T = {t1, t2}, C and C ′ as the initial
configurations depicted in a), C∗ as the final configuration in b), and N0 as the
set of strands involved in the crossing over (s and s′). As a second example
consider a less abstract case. Morgan34 noted that when he mated a white
miniature male Drosophila to a homozygous wild-type female, the first filial
females were wild type as expected. The males could, however, be wild-type,
white miniature, white or miniature. For independent assortment, second filial
males should show such phenotypes equally. In fact 37.6% represented the new
recombinant types white and miniature, while the rest were either wild type
or white with miniature. The siutation is illustrated in Figure 3-7 in which a
sample of other loci have been included for clarity. The exact point of crossover
could in principle be anywhere between white and miniature, and phenotypes
varying in other respects would then be observed.

34(Morgan, 1911).
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Fig.3-7
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y yellow body
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w(+) white eyes absent (normal or wild type)
cv crossveinless wings

l lozenge wings
m miniature wings

m(+) miniature wings absent (normal or wild type)
t tiny bristles
b bar eyes

The most important kind of application of combination kinematics is in recom-
bination studies. For this reason we want to further analyse the recombination
case. This may best be done in a kind of classification of different types of
combination kinematics corresponding to important branches of genetics. We
distinguish four such types, three of which are directly connected to particular
genetic applications. All types may be described as specialisations of the general
model of combination kinematics above.

A first specialisation obtains in cases of complete linkage. Complete linkage
means that the initial strands occurring in configurations C and C ′ of a com-
bination kinematics are not altered during the process of combination. So the
final strands in C∗ are identical with strands in N0. What may change is just
the configuration of those strands. In Figure 3-8 a simple case is depicted.
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Fig.3-8
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A second specialisation deals with the opposite extreme. This case does not
seem of much relevance in genetics. It is of merely conceptual interest. We
speak of unrestricted combination here. The idea is that the ordering of the
quanta in the strands is completely irrelevant during the process of combina-
tion. Thus each quantum from some initial strand in C or C ′ may occur at
whatever position in each final strand of C∗. This would be a completely com-
binatorial account which might be further substantiated by adding statistical
hypotheses about the distributions of quanta in the initial and final strands or
configurations. A simple schematic example is shown in Figure 3-9.

Fig.3-9
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A case in-between the two extremes just introduced is that of Mendelian combi-
nation. This kind of combination uses the positions in which the quanta occur
on the strands. All strands involved in the combination kinematics are supposed
to have the same ‘length’, i.e. the same number of quanta, and thus the same
number of positions. The combination of quanta during the transition from ini-
tial to final strands is restricted to the respective positions at which the quanta
occur. The quantum occurring at position number j, say, in a final strand has
to be one of those occurring at the same position in one of the initial strands.
Besides this constraint quanta may be combined freely, that is, no linkage has
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to obtain. Two initial strands thus may be completely ‘mixed up’ as shown in
Figure 3-10. A fuller account of Mendelian combination will be given in the
next chapter.

Fig.3-10
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The fourth and most important specialisation is that of recombination occur-
ring. Recombination consists in one or several occurrences of crossing over. The
general case may best be defined recursively. We first describe a situation with
just one crossing over, and then iterate the definition.

Let C = 〈{x, y}, IR3, ψ〉 and C ′ = 〈{u, v}, IR3, π′〉 be configurations of strands.
We say that C ′ is obtained from C by simple (or 1-fold ) crossing over iff there
exist strands a, b, c, d such that

i) x = a ◦ b and y = c ◦ d
ii) u = a ◦ d and v = c ◦ b.

Now let C = 〈{x, y}, IR3, ψ〉 and C ′ = 〈{u, v}, IR3, ψ′〉 be configurations of
strands. We say that C ′ is obtained from C by (n+1)-fold crossing over iff
there exists a configuration of strands C∗ = 〈{x1, x2}, IR3, ψ∗〉 such that

i) C∗ is obtained from C by n-fold crossing over
ii) C ′ is obtained from C∗ by 1-fold crossing over.

We say that a combination kinematics contains recombination iff at least one
sub-configuration of a configuration in C∗ consisting of two strands is obtained
from corresponding sub-configurations of the initial configurations by n-fold
crossing over for some n.

In Figure 3-11 a case of 3-fold crossing over is depicted in its three states
relevant to the definition.
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Fig.3-11
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In general, crossing over may occur not only between two strands but between
more than two. Anderson35 demonstrated that crossing over could occur during
the four stranded stage of meiosis. He used the attached X-chromosome mutant
of Drosophila and studied the Bar locus. Figure 3-12 schematises such crossing
at the four strand stage. A similar schema might be provided for polyploidy.

Fig.3-12
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(after Strickberger 1964)

As such phenomena are studied only rarely, a fully general definition need not be
given here. Instead, let us briefly look at the case of four strands being involved.
The generalisation of 1-fold crossing over is this. Let C = 〈{x1, ..., x4}, IRe3, ψ〉
and C ′ = 〈{y1, ..., y4}, IR3, ψ′〉 be configurations of strands. Then C ′ is obtained
from C by 1-fold crossing over iff there exist strands a1, ..., a4, b1, ..., b4 such that

35(Anderson, 1925).
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i) xi = ai ◦ bi for i = 1, ..., 4
ii) yi = aji ◦ bji for i = 1, ..., 4 (where repetition of indices is

not allowed).

Similarly, the notion of (n+1)-fold crossing over may be defined.
In practice, an alternative definition is often used which is slightly stronger

than the one just given in that it excludes any strand resulting in crossing over
from being identical with one of the initial strands. This definition is easier to
apply, for on the phenotypic level it is of course impossible to detect whether
crossing over of this kind, in which the final strand is identical with one of the
initial strands, has occurred. The stronger definition may be stated as follows.
Let C = 〈N, IR3, ψ〉 and C ′ = 〈N ′, IR3, ψ′〉 be configurations of strands, and s
be a strand. We say that s is new with respect to C and C ′ iff s neither occurs
in C nor in C ′. We say that C ′ is obtained from C by strong simple (1-fold)
crossing over (and that C ′ is a simple recombination of C) iff there is a strand
s in N ′ which is new with respect to C and C ′.

When joined to the above definition of a combination kinematics, the new
strands have to consist of quanta occurring in the initial strands. By this feature
the notion of ‘new’ strands is restricted to reasonable combinations.
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Chapter 4

Transmission Genetics

Roughly, transmission genetics comprises those applications in which inherit-
ance among populations (as contrasted to individuals proper) is studied without
the necessary use of chemical means. The central methodology is to establish
data for MATOR, that is, for the probabilities of different PHENOTYPES oc-
curring in the progeny. These data are systematized and explained by means of
genetic hypotheses involving reference to COMBINATOR and DETERMINER.

We begin by introducing a general model for diploid cases which may easily
be extended to arbitrary ploidy. Our model is obtained by specialising the
general model of Chap.2. The manner of specialisation affects all levels of the
model.

A first special assumption of transmission genetics concerns the level of
MATOR which provides the ‘ontology’, the entities possessing the phenotypes.
Here, transmission genetics is definitely committed to populations, for mere con-
sideration of an individual mating does not yield reliable frequencies of traits
in the offspring. In most cases the offspring of individual parents will not even
exhaust all phenotypes which could possibly arise, not to speak of providing
reliable relative frequencies for the occurrence of these phenotypes. We treat
populations as non-empty sets of ‘individuals’ the nature of which does not
really matter, for PHENOTYPES are assigned to populations rather than to
individuals in the model. Of course, the real carriers of phenotypes are individ-
uals but the models become slightly simpler the way we proceed. So PARENT
and PROGENY in transmission genetics will always refer to populations of
parents and offspring. Accordingly, APPEARANCE assigns PHENOTYPES to
populations.

Though populations in this way seem to acquire the status of proper objects
-things to which attributes are ascribed- their identification proceeds from the
opposite direction. Populations are sets of individuals possessing the same phe-
notype. If considered in progeny they even may be taken as maximal in this
respect.

In order to determine relative frequencies of an expression in offspring one
has to count the numbers of individuals exemplifying that expression. Using the
notion of populations this procedure may be described as follows. We consider
all populations in which (i.e. in whose phenotypes) this expression occurs, and
count the sizes of these populations. By adding up the numbers thus obtained
we get the desired number of occurrences of the trait in progeny. The size of
a population is just the cardinality of the set of individuals which make up the
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population. Such cardinalities we indicate by ‖ ‖ so that ‖PARENT 1‖, for
instance, denotes the number of individuals occurring in the set PARENT 1.

The next items to be specialised are the PHENOTYPES. In transmission
genetics, these may be represented in a simple schematic form. A PHENOTYPE
is defined as a combination, more precisely as a tuple, of EXPRESSIONS. We
assume a fixed number, k, of EXPRESSIONS making up the phenotypes of one
model. Thus each PHENOTYPE has the form

〈 EXPRESSION 1,...,EXPRESSION k 〉

The expressions possible in a model are collected in a set of expressions. The
set of k-tuples of elements of this set may be regarded as a space of possible
PHENOTYPES. However, only a few of those possibilities are ordinarily used,
often this space is further restricted by reference to traits or characters.

Characters are classifications, i.e. sets, of EXPRESSIONS. If characters are
used, a particular position in a PHENOTYPE may be restricted to be filled
by EXPRESSIONS of this character only. Consider the paradigm of Mendel’s
experiments studying the well known expressions: smooth or wrinkled form of
seed, yellow or green colour of seed, grey or white colour of seed’s coat, full
or constricted form of pods, green or yellow colour of pods, place of flower
and pods along the stem or on top of it, and long or short stem. Each pea
plant will exemplify exactly seven such EXPRESSIONS, so PHENOTYPES are
taken to consist of 7-tuples over this 14-element set of expressions. The set
of expressions is naturally classified into seven characters: form of seed, colour
of seeds etc., and the PHENOTYPES may be restricted to combinations of
EXPRESSIONS in which just one EXPRESSION is taken from each character.
Thus, the first position of PHENOTYPE might be reserved to expressions of
seedform, that is, if PHENOTYPE = 〈 EXPRESSION 1,...,EXPRESSION 7 〉
then EXPRESSION 1 has to be SMOOTH or WRINKLED.

As will be seen below in connection with linkage genetics it is not always
useful to be too strict about characters, so we do not introduce them as prim-
itives (though we acknowledge them to be very helpful in many applications,
of course). Also, it has to be noted that the combinations of EXPRESSIONS
constituting the PHENOTYPES are by no means required to be complete. The
richness of a concrete phenotype always enforces some choice for systematic
treatment, and in many cases one is simply not interested in many of the EX-
PRESSIONS that might be differentiated and studied. The set of expressions
as well as the number indicating the number of EXPRESSIONS making up one
PHENOTYPE are often chosen rather coarse and small -as most convenient to
the respective application.

DISTRIBUTOR correspondingly operates on PHENOTYPES of this format.
Any ‘parental’ pair of k-tuples of EXPRESSIONS is mapped into a distribution
of phenotypes which according to our conventions we may write

〈α1 PHENOTYPE OF PROGENY 1,...,αr PHENOTYPE OF
PROGENY r 〉
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where
∑r
i=1 αi = 1 and each PHENOTYPE OF PROGENY i again is a tu-

ple of EXPRESSIONS of the above format. These PHENOTYPES and their
transmission as described by DISTRIBUTOR constitute the data which are
theoretically systematized at the level of genotypes. These data are not purely
observational. In many cases the expressions may be determined by direct obser-
vation, but in other cases (for instance in quantitative characters, like size) even
the expressions have to be determined by means of acknowledged procedures.
More obviously, the coefficients αi are not observable. They represent rela-
tive frequencies of occurrences of a corresponding phenotype in total progeny,
and thus have to be determined by determining and counting expressions, and
calculating ratios.

It is important to understand the connection in application between phe-
notypes on the one hand and populations and frequencies on the other hand.
When phenotypes are not required to represent all features really present in the
individuals but only those of interest in a given application there is an implica-
tion for the notion of a population: a given set of concrete individuals may be
partitioned into populations in different ways. This depends on how complete
and how fine we choose the set of characters, and consequently, how many ex-
pressions occur in one phenotype. In one application we may be interested, for
instance, in eye-colour and wing-shape as the only characters each of which with
two expressions, say black-red and normal-short. A set of individuals as shown
in Figure 4-1 then gives rise to four populations A,B,C,D, characterised, re-
spectively, by 〈blackeyes, normalwings〉,..., 〈redeyes, shortwings〉. In another
application we may be interested only in eye-colour and decide to study just
one character (eye-colour), say, again with two expressions (black-red). We
then have only two populations, namely A ∪ C and B ∪ D in Figure 4-1.

Fig.4-1
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The model in this sense may be said to be homogenous with respect to the choice
of characters. This does not mean that the empirical findings as expressed in
hypotheses will be the same irrespective of how the characters are chosen. We
only want to emphasize the different possibilities of application (which may
result in different hypotheses).

This homogeneity becomes important as soon as the notion of chromosome
comes into play. For in connection with chromosomes one is tempted to imagine
a PHENOTYPE as comprising all relevant expressions an individual possesses
on the basis of its chromosomes. But this picture represents just one out of var-
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ious possibilities. More frequently, there are just two or three expressions under
study -as in crossing over experiments. We may then decide to use phenotypes
to contain only those expressions, and consequently, to differentiate populations
according to the difference in these expressions.

The theoretical machinery used in order to explain the frequencies in distri-
butions of phenotypes actually observed in principle was introduced by Mendel:
every expression is represented by a sequence of abstract factors and some def-
inite hypothesis is put forward about how these factors have to be processed
so that the resulting factors and their coefficients yield some acceptable repre-
sentation of the observed distributions. In our model this means specifying the
GENOTYPES to the form of sequences of factors and then stating an explicit
definition of COMBINATOR corresponding to a hypothesis of how transmission
takes place.

Given the format of PHENOTYPES and the assumption that each expres-
sion is theoretically represented as a sequence of factors, there is a straight-
forward way to specialise GENOTYPE. Each GENOTYPE has the form of a
sequence

〈θ1, ..., θk〉

where k matches with the index used for PHENOTYPES, and where each θi is
a sequence of allelic factors. Since we want to restrict the details to the diploid
case, each sequence θi will be just a pair of factors, or alleles as it is said:

θi = 〈ai, bi〉.

We note that the order implicit in writing down a GENOTYPE as a sequence
〈θ1, ..., θk〉 rather than a mere set is not really necessary in all variants of trans-
mission genetics. In Mendelian genetics, for instance, we could get along with
a mere set, but at the cost of formal complication. In those cases, treating
GENOTYPES as sequences may be regarded as a mere matter of convenience.
In contrast to this, the allelic pairs δi necessarily have to be pairs, and not sets.
For there is no difference between the sets {a} and {a, a}, but there is a dif-
ference between two identical allelic factors being present, or only one of them.
Thus in ordinary dominance 〈a, a〉 will give the recessive character, while 〈A, a〉
will give a dominant character. Furthermore, the triploid 〈a, a, a〉 will in general
give rise to a different phenotype than either the diploid 〈a, a〉 or the haploid
〈a〉, if indeed all are viable.

In analogy with PHENOTYPES we write

GENOTYPE = 〈〈 FACTOR(1, 1),FACTOR(1, 2) 〉, ..., 〈 FACTOR(k, 1),
FACTOR(k, 2)〉〉

with FACTOR(i, j) for the j-th factor (j = 1, 2) occurring in the i-th section δi.
By collecting all FACTOR(i, j) occurring in a model for a given i we obtain a
set, which we call SET OF FACTORS i. The SETS OF FACTORS i define a
space of tuples of factors from which the GENOTYPES are chosen. A standard
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configuration of GENOTYPES is given for k = 2, that is when there are just two
SETS OF FACTORS, denoted by {A, a} and {B, b}. GENOTYPES over these
SETS OF FACTORS have the form 〈〈A,A〉, 〈B,B〉〉, 〈〈A,A〉, 〈B, b〉〉, 〈〈A,A〉, 〈b,
B〉〉 etc.

With these specific forms of PHENOTYPE and GENOTYPE it becomes
possible to set up precise requirements for COMBINATOR and DETERMINER.
The general assumption for DETERMINER (in the diploid case) in transmission
genetics is this. DETERMINER maps GENOTYPES into PHENOTYPES such
that each allelic pair yields a unique EXPRESSION i. In other words, there
are functions DET 1,...,DET k such that each DET i maps allelic pairs into
expressions

DET i(θi) = EXPRESSION i

and DETERMINER is defined as the tuple of all DET i as follows:

(3) DETERMINER(θ1, ..., θk) = 〈 DET 1(δ1),...,DET k(δk)〉

where the latter expression upon evaluation yields some PHENOTYPE:
〈EXPRESSION 1,...,EXPRESSION k〉.

In Chap.2 the property of being decomposable was generally discussed for
DETERMINER. It is easy to see that (3) is an instance of decomposability.
Accordingly, the allelic sequences θi which make up the GENOTYPES may be
regarded as genes as soon as there is some indication for their being materially
distinguishable. It is worth repeating that originally, at the time of Mendel’s
experiments no such indication was at hand. His pairs of factors therefore may
be called genes only with hindsight.

Finally, the most interesting specialisation occurs for COMBINATOR. We
have to state how COMBINATOR operates on two given GENOTYPES of the
form

(4) 〈〈 FACTOR(1, 1),FACTOR(1, 2) 〉, ..., 〈 FACTOR(k, 1),
FACTOR(k, 2) 〉〉

In order to keep things legible let’s represent these sequences in the form

g∗1 = 〈a1, b1, ..., ak, bk〉, g∗2 = 〈c1, d1, ..., ck, dk〉,

respectively. Out of these two sequences, COMBINATOR has to produce a
distribution 〈α1g1, ..., αsgs〉 where each gi again is a sequence of the form (4).
If we denote an arbitrary gi by 〈e1, f1, ..., ek, fk〉 then there are two general
requirements gi has to satisfy in order to occur in a distribution of the desired
form. The first requirement refers to the SET OF FACTORS i introduced be-
fore, and states that, for the factors ei, f i, both should be elements of the
SET OF FACTORS i. This requirement expresses independent assortment of
factors. The factors occurring in the i-th position of a GENOTYPE for offspring
have to come from a small SET OF FACTORS i, and no other set. So each posi-
tion has its corresponding SET OF FACTORS, and the factors occurring there

65



are not affected by factors of ‘other kinds’, i.e. from SETS OF FACTORS j with
j 6= i. Note that this requirement is implicit, ‘built in’ in the syntax. A second
requirement is that δi should consist only of factors actually occurring in the
parental GENOTYPES g∗1 , g

∗
2 . That is, each ei and f i is one of the ai, bi, ci, di.

This is an instance of the conservation principle discussed in Chap.3. Roughly,
it may be rephrased as stating that the genetic material is a stable ‘genidentical’
entity: no new factors enter the scene in the course of transmission.

If we denote the SET OF FACTORS i by Fi then, clearly, each GENOTYPE
is an element of the cartesian product

F = (F1 × F1)× ...× (Fk × Fk).

Using the notion of a γ-distribution over F we may say that COMBINATOR is
a function in the set D(F) of all Γ-distributions over F:

COMBINATOR: F× F→ D(F).

With some redundancy in notation each value of COMBINATOR may also be
written in the form 〈α1γ1, ..., αsγs〉, where αiεIR, αi ≥ 0,Σαi = 1, s is some
natural number, and γiεF. Strictly speaking the numbers αi are the values of a
Γ-distribution COMBINATOR(γ, γ′). The first requirement above is then met
automatically, by the definition of F.

The model being specified thus far, we may consider in more detail the
claim (2) stated in Chap.2 associated with it in applications, or in other words,
the central axiom distinguishing proper models from structures in which the
primitives are realized ‘by chance’. In Chap.2 this claim was formulated in
broad terms as a claim of fit between the coefficients α1, ..., αs and r1, ..., rk
occurring in the distribution of genotypes and the distribution of phenotypes.
We now can specify the origin of the relative frequencies r1, ..., rk within the
model, whereas in Chap.2 this was entirely a matter of interpretation external
to the model. The specification of the ri is in terms of sizes of populations in
the offspring. We may use DETERMINER to match genotypes of progeny, and
APPEARANCE to match the latter with populations. In this way we might
proceed as suggested by Figure 4-2.
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Fig.4-2
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We count βj =‖PROGENY j ‖, the number of individuals in the j-th popula-
tion, and by taking its ratio to the overall number of progeny,
µ =‖PROGENY 1 ‖ + ...+ ‖PROGENY k ‖, obtain the relative frequency
rj = βj/µ of occurrences of phenotypes of kind j, that is, phenotypes assigned to
PROGENY j by APPEARANCE. It is tempting now to use DETERMINER in
a similar way to relate the frequency rj to its theoretical counterpart αi, namely
to look for that GENOTYPE OF PROGENY i which by DETERMINER is
mapped on PHENOTYPE OF PROGENY j, and to relate its coefficient αi to
rj . This procedure overlooks, however, that the theoretical combinations, the
new genotypes obtained by COMBINATOR, need not uniquely characterize one
phenotype each. DETERMINER is not, and cannot be, required to be one-one.
In other words, different GENOTYPES OF PROGENY produced by COMBI-
NATOR might yield the same value under DETERMINER. Thus the situation
as depicted in Figure 4-3 will occur.

Fig.4-3
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We therefore must not match the αi one-one with the rj . There are too many
αi, in general, to allow for this. Rather, we have to group together all those αi
which give rise to the same PHENOTYPE OF PROGENY, and match the sum
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of their coefficients with that of the resulting PHENOTYPE OF PROGENY. If,
in the situation of Figure 4-3, besides the three GENOTPYES depicted there are
no others in the model which are mapped on PHENOTYPE OF PROGENY j
then the correct match of the coefficients will be

α1 + αi + αl = rj .

rj is the relative frequency of individuals in the offspring having PHENO-
TYPE OF PRPOGENY j. α1, αi and αl are the weights of those genotypes
which by DETERMINER are mapped onto PHENOTYPE OF
PROGENY j, that is, those and only those genotypes theoretically produced
by COMBINATOR from the parental ones which give rise to PHENOTYPE j.
So α1 + αi + αl is the expected frequency of PHENOTYPE j to occur in the
offspring, expected on the basis of the particular forms of DETERMINER and
COMBINATOR which produce the considered situation.

In order to obtain a general formulation let us introduce, for given PHENO-
TYPE OF PROGENY j (j ≤ k), and given (parental) GENOTYPE 1 γ and
GENOTYPE 2 γ∗, the set C(γ, γ∗, j) of all coefficients αi in the distribution of
genotypes COMBINATOR(γ, γ∗) = 〈α1GENOTYPE OF
PROGENY 1, ...,αsGENOTYPE OF PROGENY s 〉 for which

DETERMINER(GENOTYPE OF PROGENY i) = PHENOTYPE OF
PROGENY j.

In Figure 4-3, C(γ, γ∗, j) would be {α1, αi, αl}. The central axiom of fit to hold
in models of transmission genetics may then be formulated in two ways. The
first, simpler version is restricted to the two upper levels of the model:

(5) If
- DISTRIBUTOR(PHENOTYPE 1,PHENOTYPE 2) =
〈r1 PHENOTYPE OF PROGENY 1,..., rkPHENOTYPE OF
PROGENY k〉
- DETERMINER(γ) = PHENOTYPE 1
- DETERMINER(γ∗) = PHENOTYPE 2
- COMBINATOR(γ, γ∗) = 〈α1γ1, ..., αsγs〉
- j ≤ k
then ∑

αεC(γ,γ∗,j) α = rj

The situation is depicted in Figure 4-4. The two levels fit, as required, if the
sum of all αi in C(γ, γ∗, j) equals rj .
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Fig.4-4
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In this formulation PHENOTYPE 1, PHENOTYPE 2, r1, ..., rk, PHENOTYPE
OF PROGENY 1,...,PHENOTYPE OF PROGENY k, γ, γ∗, α1, ..., αs, γ1, ..., γs

and j have the status of variables. The axiom requires that for all instances of
the premisses which are possible in the model, the conclusion holds true. In
particular, the equation among coefficients has to hold for all j ≤ k. Note that
j occurs also at the left hand side of the final equation, namely in the definition
of C(γ, γ∗, j).

A second, more elaborated version is obtained when we include the first
level, and define relative frequencies rj in terms of sizes of populations.

(6) If
- PARENT 1 and PARENT 2 are populations
- MATOR(PARENT 1,PARENT 2) =

〈 PROGENY 1,...,PROGENY k 〉
- j ≤ k
- APPEARANCE(PROGENY j) = PHENOTYPE OF PROGENY j
- γ, γ∗ are GENOTYPES
- DETERMINER(γ) = APPEARANCE(PARENT 1)
- DETERMINER(γ∗) = APPEARANCE(PARENT 2)
- COMBINATOR(γ, γ∗) = 〈α1γ1, ..., αsγs〉

then ∑
αεC(γ,γ∗,j)

‖PROGENY j‖
‖PROGENY 1‖+...+‖PROGENY k‖ .

The right hand side of the equation is just the definiens for the relative frequency
rj . Thus the corresponding picture is obtained by extending Figure 4-4 on the
bottom.
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Fig.4-5
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In summary, a general model of transmission genetics is a general model as de-
scribed in Chap.2 which satisfies the following additional axioms:

There exist a number k and sets SET OF FACTORS i for all i ≤ k
such that

AT1 each PHENOTYPE has the form 〈 EXPRESSION 1,...,
EXPRESSION k 〉

AT2 each GENOTYPE has the form
〈〈 FACTOR(1, 1),FACTOR(1, 2) 〉, ..., 〈 FACTOR(k, 1),FACTOR(k, 2)〉〉
where for all i ≤ k and j = 1, 2, FACTOR(i, j) is an element of
SET OF FACTORS i

AT3 there exist functions DET 1,...,DET k such that DETERMINER can
be written in the form
DETERMINER(〈 FACTOR(1, 1),...,FACTOR(k, 2) 〉 =
〈 DET 1(FACTOR(1, 1),FACTOR(1, 2)),..., DET k(FACTOR(k, 1),

FACTOR(k, 2) 〉 =
〈 EXPRESSION 1,...,EXPRESSION k 〉

AT4 COMBINATOR is such that for all γ, γ∗, α1γ1, ..., αsγs:
if COMBINATOR(γ, γ∗) = 〈α1γ1, ..., αsγs〉 then
for all i ≤ s all components of γi are among the components of
γ and γ∗

AT5 the basic axiom of fit holds in one of the two forms (5) or (6)
above, for all r1, ..., rk,
all PHENOTYPE OF PROGENY 1,...,PHENOTYPE OF

PROGENY k,
all γ, γ∗, all α1, ..., αs, γ1, ..., γs,
all PARENT 1, PARENT 2, PROGENY 1,...,PROGENY k , and
all PHENOTYPE 1, PHENTOYTPE 2 for which DISTRIBUTOR
is defined, and which occur in the system.
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We note that our account for ploidy p = 2 can be extended without essential
change to ploidy p > 2. The only change is in the form of GENOTPYES which
for arbitrary p are tuples of allelic sequences of factors of length p (instead of
2). That is, each GENOTYPE takes the form

〈〈 FACTOR(1, 1),...,FACTOR(1, p) 〉, ..., 〈FACTOR(k, 1), ...,
FACTOR(k, p)〉〉.

Note further that axiom AT5 is not implied by the general form of the axiom
of fit stated in (2) in Chap.2. Whereas in (2) the connection between the
coefficients occurring in the distributions of phenotypes and genotypes is left
unspecified, in AT5 it is spelled out in a more special way.

Two further remarks may be added. First, one might contemplate the possi-
bility of further relaxing the requirement of independent assortment as expressed
in the form of GENOTYPES and of COMBINATOR by means of the differ-
ent SETS OF FACTORS i. This would yield a model with one single overall
set of factors which might be relevant in complex, simultaneous combinations
of different expressions. In fact, such situations occur, in fine structure genet-
ics, for example, the semi-dominant ‘bar’ locus in Drosophila.36 We believe,
however, that the principle of independent assortment provides a core principle
for versions of classical transmission genetics of Mendelian and non-Mendelian
types. Relaxation of this principle opens a new field and should be conceptually
distinguished by giving rise to another model. Essentially, the classical model
as just described assumes a relation

one gene - one expression

which goes together with independent assortment. If the latter assumption is
given up, the former will be difficult to maintain.

Second, we did not require independent segregation. This formally would
amount to requiring that COMBINATOR, in fact, produces all possible combi-
nations of a certain type with equal probability coefficients. This special case
is typical for Mendelian models proper.

A first submodel of transmission genetics is thus provided by Mendelian
genetics. This model is obtained by imposing further requirements on COM-
BINATOR which, in fact, amount to an explicit definition, and on DETER-
MINER. In addition to the stipulations for the general model there are four
new features. First, all possible combinations of parental factors -combinations
within one SET OF FACTORS, to be sure- have to be considered, and all these
combinations are equally probable. This amounts to Mendel’s law of indepen-
dent segregation. Second, we now have an explicit restriction to the diploid
case (but still the definition of COMBINATOR to be given below can be ex-
tended to general ploidy). Third, we have to introduce characters in more
detail. There are exactly k CHARACTERS corresponding to the length k of

36(Sturtevant and Morgan, 1923), (Sturtevant, 1925).
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the tuple representing PHENOTYPES. Each CHARACTER i, i ≤ k, is a set
containing exactly two EXPRESSIONS, denoted by EXPRESSION(i, 1) and
EXPRESSION(i, 2). Fourth, we need the distinction between dominant and
recessive factors. This is introduced by a stipulation for DETERMINER. It
is required that for any two EXPRESSIONS of one CHARACTER there are
two corresponding unique FACTORS, both from the same SET OF FACTORS
such that exactly one pair of these two FACTORS yields one EXPRESSION
(the recessive one) while the three other pairs that can be formed from the two
FACTORS yield the other EXPRESSION. The four pairs of two factors a, b
are, of course, 〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉. For a precise definition of this require-
ment it is convenient -though not strictly necessary- that DETERMINER is
decomposable, as assured in the general transmission model.

Formally, these requirements are expressed by defining COMBINATOR in
an explicit way. To this end we have to introduce a formal operation of multi-
plication for distributions of genotypes. We agree that the concatenation of two
tuples

γ = 〈x1, ..., xn〉, γ∗ = 〈y1, ..., ym〉, denoted by γγ∗,

is simply the tuple

〈x1, ..., xn, y1, ..., ym〉.

We further agree on abbreviating distributions of genotypes of the form

〈α1γ1, ..., αsγs〉

by ∑s
i=1 αiγi , or by αiγi + ...+ αsγs.

Two distributions of genotypes
∑t
i=1 αiγi and

∑t
i=1 βiγ

∗
i are formally multiplied

as follows

(7) (
∑s
i=1 αiγi)(

∑t
i=1 βiγ

∗
i ) = α1β1γ1γ

∗
1 + ...+ α1βtγ1γ

∗
t + ...+ αsβ1γsγ1∗ +

...+ αsβtγsγ
∗
t .

This definition may of course be iterated by ‘multiplying’ (7) from the right
with another distribution and so on. The result of such iterated multiplication
of n distributions ∑s

i=1 α
j
iγ
j
i , j = 1, ..., n

(all of equal ‘length’ s) is written as

(...((
∑s
i=1 α

1
i γ

1
i )(

∑s
i=1 α

2
i γ

2
i ))...(

∑s
i=1 α

n
i γ

n
i ))

or, more briefly:
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∏n
j=1(

∑s
i=1 α

j
iγ
j
i ).

Note that in the course of this formal procedure the tuples of ‘genetic factors’ get
longer, for instance the ‘length’ (i.e. the number of components of the tuples)
of γγ∗ is the sum of the lengths of g and g∗.

With the help of these formal definitions COMBINATOR can be defined as
follows. Let g = 〈a1, b1, ..., ak, bk〉 and g∗ = 〈c1, d1, ..., ck, dk〉 be two GENO-
TYPES. Then

COMBINATOR(γ, γ∗) =
∏k
j=1(1/4ajcj + 1/4ajdj + 1/4bjcj + 1/4bjdj).

For k = 1, this yields

COMBINATOR(〈a, b〉, 〈c, d〉) = 1/4ac+ 1/4ad+ 1/4bc+ 1/4bd

and for k = 2

COMBINATOR(〈a1, b1, a2, b2〉, 〈c1, d1, c2, d2〉) =
(1/4a1c1+1/4a1d1+1/4b1c1+1/4b1d1)(1/4a2c2+1/4a2d2+1/4b2c2+1/4b2d2) =

1/16a1c1a2c2 + 1/16a1c1a2d2 + ...+ 1/16b1d1b2d2.

By eliminating the ‘+’ and inserting commas instead, the last expression is just
a distribution of genoytpes 〈α1γ1, ..., α16γ16〉 where each αi = 1/16. Note that
the increase in length of GENOTYPES in the course of formal mulitplication is
counterbalanced by reducing the length of the tuples occurring on the right hand
side in the definition of COMBINATOR after the symbol for the product. These
tuples have all length 2, like 〈aj , bj〉. Intuitively, this corresponds to taking only
combinations of FACTORS that contribute to the same CHARACTER.

By way of summary we obtain the following description of a model of
Mendelian genetics.

A model of Mendelian genetics is a model of transmission genetics
with corresponding number k, SETS OF FACTORS i (i ≤ k),
and component-functions DET 1,...,DET k of DETERMINER subject
to the following additional requirements:

MEND1: For all GENOTYPES γ = 〈a1, b1, ..., ak, bk〉, γ∗ = 〈c1, d1, ..., ck, dk〉
COMBINATOR(γ, γ∗) =

∏k
j=1(1/4ajcj + 1/4ajdj + 1/4bjcj + 1/4bjdj)

MEND2: For all i ≤ k there is a set CHARACTER i consisting of two
elements EXPRESSION(i, 1) and EXPRESSION(i, 2)

MEND3: For any number i ≤ k, and any two EXPRESSION(i, j1),
EXPRESSION(i, j2) there exist exactly two FACTOR(i, 1),
FACTOR(i, 2) such that
a) DET i(FACTOR(i, 1),FACTOR(i, 1)) = EXPRESSION(i, j1)
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b)

DET i(FACTOR(i, 1),FACTOR(i, 2))
DET i(FACTOR(i, 2),FACTOR(i, 1)) = EXPRESSION(i, j2)
DET i(FACTOR(i, 2),FACTOR(i, 2))

The structure of GENOTYPES referring to SETS OF FACTORS, together
with the definition of COMBINATOR in MEND1 covers Mendel’s laws of in-
dependent segregation and assortment. EXPRESSION(i, j1) in MEND3-a is
called recessive, and EXPRESSION(i, j2) in MEND3-b dominant.

An application of Mendel’s law is now considered in which characters may
be described in biochemical or gross terms. It is to flower colour in Antirrhinum
majus. DeVries and Wheldale37 suggested that inheritance of corolla colour
could be explained in terms of the characters yellow lips, ivory tube, ivory lips,
magenta lip and magenty tube. Later Onslow, nee Wheldale, and Bassett38

gave biochemical characterisations of the situation. It is worth noting that
whether a character is expressed in biochemical terms or gross terms this does
not affect which of transmission or molecular genetics is employed. However, as
will be seen elsewhere, a biochemical characterisation is a pre-requisite for the
application of molecular genetics.

In the present example we will use I to signify the character ivory lips, and
i to signify its absense. T will signify magenta tube and t the absense thereof.
The corresponding factors will be A and a, and B and b. Then MEND3 reads
as follows:

DET(A,A) = DET(A, a) = DET(a,A) = I
DET(a, a) = i
DET(B,B) = DET(B, b) = DET(b, B) = T
DET(b, b) = t.

Let the factor content of the parents be given by MEND1 as γ = 〈A, a, T, t〉 and
γ∗ = 〈A,A, T, T 〉. Then

COMBINATOR(γ, γ∗) = 1/8AABB + 1/8AAbB + 1/8AaBB + 1/8AabB+
1/8aABB + 1/8aAbB + 1/8aaBB + 1/8aabB

Applying MEND3 we get

3/4IT + 1/4iT

as expected probabilities of progeny.
A second specialisation of the general transmission model yields a model for

linkage genetics. The essential addition in this submodel is some weak reference
to chromosomes. The idea that genes are sections of the chromosomes is consti-
tutive for linkage genetics. We do not need, however, to introduce a full concept

37(DeVries, 1900) and (Wheldale, 1907).
38(Onslow and Bassett, 1913) and (Bassett, 1931).
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of a chromosome in order to describe the theoretical linkage model. All we
need is the idea that genes are linearly ordered along the chromosomes, or along
pairs of homologous chromosomes. Restricting ourselves to the diploid case (as
before) the following interpretation of genotypes is most natural. Any GENO-
TYPE of the form 〈〈a1, b1〉, ..., 〈ak, bk〉〉 has a natural order built in, as given
by the indices 1, ..., k. Furthermore, it consists of two strands, defined as follows.

If γ = 〈〈a1, b1〉, ..., 〈ak, bk〉〉 is a GENOTYPE the two
strands of γ are given by the tuples 〈a1, ..., ak〉 and 〈b1, ..., bk〉.

These strands can be easily interpreted as representing the chromosomes of
a pair of homologous chromosomes. Thus strand 〈a1, ..., ak〉 represents one
chromosome, and strand 〈b1, ..., bk〉 the other as shown in Figure 4-6).

Fig.4-6
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As is well known, the chromosomes duplicate during the first meiotic division,
each of the connected copies being called a chromatid. The two connected
chromatids are copies of each other, and therefore structurally identical. Under
the present interpretation each chromatid also is represented by a strand, and
connected chromatids have to be represented by the same kind of strand.

It was observed as early as Bateson at al.39 who worked on linkage between
pollen shape and flower colour in sweet peas that the hypothesis of whole strands
combining with each other cannot be upheld together with the other parts of
the transmission model in the light of the empirical data. Consider the abstract
example of two parental GENOTYPES of the form 〈A,A,B,B〉 and 〈a, a, b, b〉
where capital and small letters as usual denote dominant and recessive factors.
Let us assume that there is sufficient evidence to ascribe these GENOTYPES
to real parents. The strands formed in meiosis according to the above definition
are these: 〈A,B〉, 〈A,B〉, and 〈a, b〉, 〈a, b〉 (compare Figure 4-7 below). Now if

39(Bateson et al., 1905).
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the strands combine only as wholes we would obtain offspring of GENOTYPE
〈A, a,B, b〉 in the first generation, and when mating these with individuals of
the kind 〈a, a, b, b〉, offspring of the kind 〈A, a,B, b〉 or 〈a, a, b, b〉 in the next
generation.

Fig.4-7
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Offspring of GENOTYPES 〈A, a, b, b〉 and 〈a, a,B, b〉 should not occur. Actu-
ally, such offspring are encountered. Think of the mutations yellow body colour,
white eye and forked in Drosophila, studied by Morgan and Sturtevant. Thus
the assumption of strands combining as wholes (complete linkage) is untenable
in general, it occurs only in a limited range of applications. This assumption
is replaced by the weaker one that parts of strands also can combine under
appropriate conditions. In cytological terms such combinations of parts are rep-
resented as occurrences of crossing over. Two chromosomes may exchange only
part of their material as depicted in the well-known schema in Figure 4-8.
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Fig.4-8
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Figure 4-8 is also typical insofar as crossing over has been shown to occur be-
tween chromatids and not between whole homologous chromosomes.

The central hypothesis of linkage genetics in first approximation then says
that the further two parts of a parental chromosome are away from each other
the greater is the frequency of crossing over occurring between them, if the
chromosome is involved in reproduction.

By means of crossing over GENOTYPES may be obtained which are not
found among the parental ones, as 〈a, a,B, b〉 in Figure 4-8-c. These GENO-
TYPES are new with respect to the given parental ones in the sense explained in
Chap.3. The definition was this. If γ = 〈a1, b1, ..., ak, bk〉 and γ’ = 〈c1, d1, ..., ck,
dk〉 are two (parental) GENOTY PES then γ∗ = 〈e1, f1, ..., ek, fk〉 is new with
respect to γ and γ’ if at least one of the strands 〈e1, ..., ek〉, 〈f1, ..., fk〉 of γ∗ is dif-
ferent from all strands occurring in γ and γ’: 〈a1, ..., ak〉 ,〈b1, ..., bk〉, 〈c1, ..., ck〉,
〈d1, ..., dk〉. In Figure 4-8-c, the inner two strands are different from all the
original ones. Informally, a strand is new with respect to (at least two) given
strands if it is different from all those.

In order to get access at relative frequencies at the phenotypic level we must
not talk about strands but about homologous chromosomes, i.e. about pairs of
strands or about genotypes for it is these who give rise to phenotypic differences.
Also, we must not stick to the configuration as shown in Figure 4-8 but consider
two parental genotypes, and one in progeny. Moreover, the notion of a ‘part’
of a chromosome has to be clarified. Note first, that we are not interested in
the concrete material parts, for the positions at which these occur in the chro-
mosome may be occupied by different material objects (at least in the range
admitted inside one SET OF FAC-
TORS). What counts is not the material but the position on the chromosome.
Second, in order to have phenotypic relevance, we need pairs of such positions
-as corresponding to ‘one position’ on a homologous pair of chromosomes. Given
the structure of genotypes it is easy to identify such positions. Since the fac-
tors in γ = 〈〈a1, b1〉, ..., 〈ak, bk〉〉 are linearly ordered by their indices, we may
simply take those indices as their positions. Each index i ≤ k thus repre-
sents one position which may be ‘occupied’ by different pairs 〈ai, bi〉, 〈ci, di〉 for
which ai, bi, ci, di are from the SET OF FACTORS i. Under our interpretation
each such position marks a position on two paired homologous chromosomes, as
shown in Figure 4-9.

We define the set of LOCI of a model x as the set of these positions.

LOCI(x) = {1, ..., k}.

In order to avoid confusion this definitions should be applied only when the
model x is intended to cover just one kind of chromosomes. This assumption
does not restrict linkage genetics for linkage as well as genetic maps are of
course notions relative to one kind of chromosome. There is no linkage between
chromosomes of different kinds, and each genetic map represents one kind of
chromosome. In second approximation the central hypothesis of linkage genetics
now takes the following form. The farther away two loci are on a genotype the
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greater is the frequency of crossing over occurring between these loci, if the
genotype gets involved in reproduction.

The models in which recombination frequencies are determined are usually
chosen such that populations are coarse, and just reflect the differences in two
or three loci. Thus, the mutations yellow body colour, white eye and

Fig.4-9
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forked are assumed to relate to specific genes. Restricting consideration to
particular loci on the genotypes the previous definition of a strand being new
may be restated in a more restricted form which takes into account only those
factors occupying those loci. If γ, γ’ are GENOTYPES and i, j are loci we define

A strand s is new wrt γ, γ’,i and j iff
1) s has the form 〈e1, ..., ek〉
2) γ and γ’ have the forms 〈〈a1, b1〉, ..., 〈ak, bk〉〉 and
〈〈c1, d1〉, ..., 〈ck, dk〉〉, respectively
3) 〈ei, ej〉 is different from each of the four pairs:
〈ai, aj〉, 〈bi, bj〉, 〈ci, cj〉, 〈di, dj〉

This definition is schematically depicted in Figure 4-10. Accordingly, we say
that a GENOTYPE γ∗ is new with respect to given genotypes γ, γ’ and loci i, j
if at least one of the two strands of γ∗ is new with respect to γ, γ’,i and j.

Now the frequency of crossing over between two loci may be defined in two
steps. First, consider some given genotype γ∗ of the progeny produced by γ
and γ’. The frequency of ‘occurrence’ of γ∗ is given in the transmission model
as the coefficient which in the genetic distribution COMB(γ, γ’) is associated
with genotype γ∗. If COMB(γ, γ’) has the form

∑
αiγi, and γ∗ is γi, then the

frequency of γ∗ is just αi. If crossing over has occurred a

79



Fig.4-10
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new genotype will be ‘observed’, i.e. will be inferred from observations of phe-
notypes by means of extra assumptions about DETERMINER pertaining to the
case. Taking this new genotype as γ∗ we get it’s frequency from the transmis-
sion model as just described. This frequency tells how many times some crossing
over resulting in γ∗ has occurred. In other words, the frequency of crossing over
between loci i and j for given parental genotypes γ, γ’ which results in genotype
γ∗ is given by the coefficient of γ∗ in the general model. We define

If γ∗ is new with respect to γ, γ’,i and j then the
recombination frequency in loci i, j of γ and γ’ resulting in γ∗,
abbreviated by RCF (γ, γ’,γ∗, i, j), is defined by
RCF (γ, γ’,γ∗, i, j) = COMB(γ, γ’)(γ∗).

This definition refers to nearly all components of the transmission model, and
is depicted in Figure 4-11 for the case of DETERMINER being one-one.

Fig.4-11
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In this definition, the three genotypes γ, γ’ and γ∗ are assumed to be given. We
arrive at the recombination frequency for loci i, j on given parental genotypes
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γ, γ’ by considering all possibilities of recombination, calculating the correspond-
ing frequencies, and adding them up. In this way we obtain the recombination
frequency for γ, γ’ in loci i, j:

RCF (γ, γ’,i, j) =
∑
RCF (γ, γ’,γ∗, i, j)

where summation is over all genotypes γ∗ which are new with respect to γ, γ’,i
and j.

Note that these definitions do not contain direct reference to the material objects
studied in cytology. It has to be stressed, however, that this truthfully reflects
the status of linkage genetics. Though a connection between chromosomes and
the ordering of genes and factors along them was hypothesised from the first days
of linkage genetics, the linkage theory -as described in the following model- does
not systematically refer to, or use, this connection. Linkage genetics entirely
relies on recombination frequencies.

Recombination frequencies are used in order to construct linkage- or genetic
maps. Such maps are representations of loci on the line of real numbers such
that order and distances as appearing in the genetic material are homomorphi-
cally represented by the order and distances of the representing numbers. Note
that even the order is not given apriori which is not surprising in view of the
complicated topological structure of the strands if considered as chromosomes
or DNA. For genetic maps, the order is established by comparing the mea-
sured distances and fitting them so that additivity makes sense. If, for instance,
d(α, β) and d(β, γ) are both smaller than d(α, γ) then β must be between α
and γ. Clearly, the definition has to be relativised to one given kind of chromo-
somes or, formally, to one given kind of GENOTYPES. The loci occurring in
GENOTYPES of that kind are ordered by the genetic map, while comparison
of loci belonging to different kinds of GENOTYPES obviously makes no sense.
This relativisation is best achieved by restricting application of the model. We
only work with a model whose set of GENOTYPES is interpreted as containing
only GENOTYPES ‘of the same kind’, i.e. corresponding to one kind of chro-
mosomes. Under this interpretation, the relativisation of the genetic map needs
not to be made explicit.

We may introduce genetic maps as follows. Let x be a model of transmission
genetics. The GENOTYPES in x have the form 〈a1, b1, ..., ak, bk〉 where ai and
bi vary in the SETS OF FACTORS i for i = 1, ..., k. A genetic map for x is
defined as a function

f : LOCI(x) → IR

subject to the following requirements:

AL1 for all i ε LOCI(x): f(i) ≥ 0
AL2 for all GENOTYPES γ, γ’ in x and all i, j ≤ k

100 ·RCF (γ, γ’,i, j) =| f(i)− f(j)|
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The factor 100 is inserted in AL2 to get percentages rather than relative fre-
quencies. By adding to the models of transmission genetics a genetic map we
obtain models of linkage genetics. In other words, a model of linkage genetics is
defined to be a structure

〈x, f〉

where x is a model of transmission genetics and f :LOCI(x) → IR is a genetic
map for x.

Some further remarks are necessary in order to clarify this definition. We
require the genetic map to be defined for all the loci occurring in the model.
Often, not all the f -values of such a map will be known. But this feature f
shares with many other concepts, like COMBINATOR and DETERMINER. A
notion may be introduced even if we do not know its complete extension in all
cases. In this connection it has to be noted (again) that the model is homogenous
with respect to application. We may consider a rather restricted set of loci in
one model, a set much smaller than the set of ‘all real’ loci which belong to the
population under study simply by using more restricted GENOTYPES. Even
if the real system contains many loci, the fact that we don’t know them (yet)
does not prevent us from application of our model.

Furthermore, we observe that axiom AL2 becomes false if different geno-
types (of the same kind) yield different recombination frequencies. This might
happen when the loci i, j are occupied by different factors in two parental sets
of genotypes. The axiom excludes such situations from the models of linkage
genetics, and thus goes beyond a mere ‘definition’ of the genetic map f. It re-
quires the data to be consistent (at least approximately) in this respect. Only
if they are, linkage genetics is able to produce genetic maps.

The actual determination of a genetic map proceeds by a kind of trial and
error. First, some assumption about the order is put forward. Then some f -
values are determined through recombination experiments. If the f -values fit
with the assumption about their order, fine. If they don’t fit, we have to modify
the assumption about their order and start again. The usual way to proceed
in determining f -values is to determine as many recombination frequencies as
possible. From the equations in AL2 the f -values may be determined, and, if
correct, their order falls out naturally.

The theme of characters, played down in connection with transmission mod-
els, may now be reconsidered. The original idea linking the notions of character,
gene, and chromosome was that genes are materialised along the chromosome,
each gene giving rise to, or causing, one expression. When expressions are clas-
sified into characters then, so the original account runs, different expressions of
the same character are brought about by different genes, but genes at the same
locus of the chromosome. In other words, replacing materially a gene by another
one which belongs to the same character will yield a different expression of that
character, and by this process of replacement all expressions of a character may
be obtained. This picture has turned out as wrong in the development of linkage
genetics, however. It was found that different expressions of the same character
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may occupy different positions on the genetic map, and therefore also on the
chromosome. Think of Drosophila, and its different positions for shape of wings
or eye-colour. So in linkage genetics the notion of a character can not be used in
its ordinary meaning. If it is used at all, we have to provide for the possibilitiy
of different expressions which belong to the same ordinary ‘character’ falling
under different CHARACTERS of the model. This led us to drop the notion of
character as a primitive in the general transmission model altogether.

In the light of our previous remarks on application the following objection
may be raised against the models of linkage genetics just introduced. As we allow
for very small models it might occur that we have two models describing mating
experiments within the same species. Our model in this case does not contain
any hint at an identity of the linkage maps in both models, which one would
certainly want. We are aware of this difficulty. It could be avoided by enlarging
the models such that each model already contains all populations of a species.
We think that our approach has decisive advantages to this alternative. First,
on the alternative account, there is a big problem with application. Application
of a model would mean applying it to a whole species. Such a process may be
imagined, but it represents a heuristic limit rather than an observable process
as actually taking place in scientific practice. Since we want to have the process
of application of a model be part of ordinary scientific practice rather than a
Platonic ideal we have to stick to small, ‘local’ models. Second, our approach
does not preclude such ‘big’ models, on the other hand. A model covering a
whole species may be subsumed under the previous definition without difficulty.
Third, we learn from other sciences that identities of the kind just met for genetic
maps within a species are a major feature of empirical theories and therefore
should be treated as explicitly as possible (and not hidden in assumptions about
the size of a model). Examples to the point are identities of masses in mechanics,
of chemical formulas in chemistry, or of utility functions in economics.

The best way to make such identities explicit is to treat them as constraints
on models.40 Different models of a certain kind are constrained to contain
identical parts. Different models of linkage genetics representing cases from the
same species are required to have identical linkage distances.

It is helpful for the understanding of our models to see what can be made of
the notion of a species in terms of such models. We must not expect too much,
however. Delineating species is a deep problem which cannot be adequately
performed as long as we stay within the boundaries of genetics.41 Nevertheless,
something can be achieved in this direction even when restricting ourselves to
the models of transmission genetics. On the basis of these models we define
a SPECIES to be a set X of models of transmission genetics subject to the
following requirements:

40This important idea was introduced by (Sneed, 1971).
41Compare (Mayr, 1967) for a survey.
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AS1 for any two models x, y in X:
1.1 the two numbers kx and ky characteristic for the lengths of

PHENOTYPES in x and y, are identical: kx = ky
1.2 for all i ≤ k (=kx = ky) the i-th expressions in x are the same

as in y
1.3 for all i ≤ k: the i-th set of factors is the same both in x

and in y: (SET OF FACTORS i)(x) = (SET OF FACTORS i)(y)
1.4 the determiners are the same in x and y:

DETERMINER(x) = DETERMINER(y)
AS2 X is maximal with respect to AS1.

Thus in any two models of a species the structure of phenotypes and genotypes
is the same, as well as DETERMINER. AS2 guarantees that no model is ‘over-
looked’. We need not require that genotypes be identical for this follows from
AS1.1 and AS1.3. Also, AS1.1 and AS1.2 imply that the set of all possible
phenotypes in any model of a species is the same. This definition provides a
first approximation. It does not take into account the well known problems
which occur on closer inspection, as for instance changes in chromosome num-
ber in Down’s syndrome. Here the DETERMINER operates differently owing
to changes in GENOTYPE, but the PHENOTYPE is still human.

On the basis of this concept of a species the above constraint on models of
linkage genetics requiring identity of genetic maps may be formulated in precise
terms.

A set X of models of linkage genetics satisfies the constraint for the genetic map
iff

CL1 X is a species42 (and the GENOTYPES in models of X have
length 2k)

CL2 for any two models x, y in X and for all γ, γ’ such that
γ and γ’ are GENOTYPES both in x and in y, and for all i, j ≤ k
RCFx(γ, γ’,i, j) = RCFy(γ, γ’,i, j)

The assumption expressed in this constraint by and large may be taken as an
empirical hypothesis which is well corroborated. Recombination frequencies for
a given set of loci remain identical in different experiments of the same kind, or
in experiments within the same species.

We call a set X of models of linkage genetics recombination complete if, for
every model x in X and for every pair i, j of loci in x there are GENOTYPES
γ, γ’ in x such that the recombination frequency RCF (γ, γ’,i, j) in x is non-
zero. This condition expresses a strong idealization, but is necessary to prove
the following

42Very strictly, one has to omit the genetic maps from the structures in X in requiring CL1,
for SPECIES were defined at the general level of transmission genetics.
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THEOREM 1 If X is a set of models of linkage genetics satisfying the
constraint for the genetic map, and if X is recombination
complete then for all models x, y in X there exists a
real number α such that:
the genetic maps fx and fy of x and y respectively, are
identical up to the addition of α.

Proof: Let X be a set of models of linkage genetics satisfying the con-
straint for the genetic map, and let X be recombination complete. Let x, y
ε X. From AS1.3 it follows that the sets of loci in x and y are identical:
LOCI(x) = LOCI(y). Let i be some locus in x. If LOCI(x) does not contain
any other element, there is nothing to prove. So we may assume that LOCI(x)
contains some j different from i. By the assumption of recombination complete-
ness there exist GENOTYPES γ, γ’ in x such that RCF (γ, γ’,i, j) is non-zero
in x. By AL2 we obtain 100 · RCFx(γ, γ’,i, j) =| fx(i) − fx(j)|. By AS1.3
γ, γ’ also are GENOTYPES in y, so from CL2 we obtain: RCFx(γ, γ’,i, j) =
RCFy(γ, γ’,i, j) and from AL2: 100 · RCFy(γ, γ’,i, j) =| fy(i) − fy(j)|. So (∗)
| fx(i) − fx(j)| =| fy(i) − fy(j)|. As i, j were arbitrary (∗) holds for all pairs
of loci in LOCI(x) = LOCI(y). So the distances between any two arguments
of fx and fy are the same in their common domain. A theorem of real analy-
sis then states that fx and fy can differ at most by some constant α : fx = fy+α.

This theorem may be rephrased by saying that in a set X satisfying all the
assumptions stated the genetic maps in all models of X are equal up to the
choice of some unit. Thus Theorem 1 may be regarded as an instance of a rep-
resentation theorem governing the introduction of a numerical function on the
basis of ‘observational data’.43 For a SPECIES X in which the two additional
conditions stated in Theorem 1 are satisfied we may say that in X the genetic
map is uniquely determined up to addition of some α.

43Such representation theorems are studied in the literature about measurement, see (Krantz
et al., 1971), for example.
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Chapter 5

Molecular Genetics

It is difficult to give an adequate definition of molecular genetics which clearly
relates it to the rest of genetics, and to transmission genetics in particular. We
do not want to state an attempted definition now but first try to get a more
concise idea about molecular genetics. Our general model may then serve to
draw distinctions in this area. Let us begin by recalling some basics of molecular
genetics.

Much of molecular genetics is concerned with the structure of DNA, in par-
ticular with the Watson Crick model of DNA.44 According to this model, DNA
contains two purine bases, adenine (A) and guanine (G) and two pyrimidine
bases, thymine (T) and cytosine (C). It is polarised, with a base sequence such
as AGTCG having its first member at the 3’-OH group and the last one at the
5’-OH end of the molecule. A base sequence is thus said to be written in the 5’
to 3’ direction. The DNA molecule has a double helical structure as shown in
Figure 5-1.
Fig.5-1
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44(Crick and Watson, 1953).
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The two polynucleotide chains have opposite polarity. However, adenine always
pairs with thymine while guanine always pairs with cytosine. There is no re-
striction to the sequence of bases, and it is this sequence which carries genetic
information. Typically, a DNA molecule may contain millions of base pairs.
Although DNA as encountered in the chromosomes of eukaryotes is generally
linear, some prokaryotes have a circular DNA. Similarly, packets of DNA used
in transduction experiments, in which the cell genome is deliberately changed,
are frequently circular. In the eukaryote, a single DNA molecule is the main
constituent of each chromosome. The molecule forms a linear and unbranched
string folded in a very complex way. Approximately half of the mass of chromo-
somes is due to DNA, the rest to small proteins called histones. The chromosome
is physically composed of chromatin fibers. Each chromatin fiber is a flexibly
jointed chain of nucleosomes each containing around 200 base pairs of DNA
wound around the outside of a core of histones. By virtue of this arrangement,
the DNA occupies very little volume in comparison to its length. Not all DNA
is in the nucleus, however. The mitochondrion contains its own DNA. A distin-
guishing feature of eukaryotes is that they carry repetitive sequences of DNA.
These are termed satellite DNA sequences and are located at the centromeres.
Codon sequences for histones are repeated in tandem many times. By contrast,
many important proteins only have a single codon sequence. However, when this
is the case, these are separated by some hundreds of bases. Furthermore, the
codon sequences for almost all proteins in the higher eukaryotes are split into
distinct exons separated by an intron many hundreds of base pairs in length.
Transcriptional activation of part of a chromosome has been related to ‘puffing’
or loosening the chromosome in that region.

It is not now necessary to repeat the details of the chemical composition of
the different bases here which can be found in many textbooks.45 This is not
to say that the chemical details are not important to molecular genetics. Quite
the contrary is true. We omit these details because in further filling out our
model we will not reach a level on which the chemical ‘fine structure’ is used in a
substantial way. Such a level, namely the level of genetic control of phenomena
like crossing over, exists, to be sure, and forms an area of excited research at the
moment. However, since no model of these phenomena has been put forward we
can only make a few sketchy remarks about our model’s bearing on that issue.

The most frequent form of occurrence of DNA is in linear form. Neglecting
circular occurrences -which may be treated in a model of their own- we may
apply the general concept of a strand as stated in Chap.3. Each linear DNA
molecule has the structure of a strand. It forms an ordered sequence of quanta,
where the order is given by the order in which the different base pairs are
chemically bound together via the well known phosphodiester bonding. There
is an alternative to taking the whole DNA molecule as forming a strand: instead
of taking the whole molecule we might consider only one string of the double
helix as forming a strand in the sense of Chap.3. There are two reasons which
make the latter choice preferable. First, it is more economic. Second, and

45For instance (Strickberger,1985) and (Goodenough and Levine, 1974).
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more importantly, the notion of a strand was introduced in order to clarify the
structure of genotypes, genotypes were analyzed as configurations of strands
in Chap.3. Genotypes carry the genetic information. If we look at how this
information is processed in transcription we see that only one of the two DNA
strings serves as a template. The genetic information is actually contained in
one (either) of the two strings of the DNA molecule. We therefore will use the
notion of a strand to apply to just one such string. Comparing the quanta there
also is an alternative. We may take quanta to be single bases or to be base
triplets. As will become clear below, the latter alternative is more adequate.
To summarize, we apply the notion of a strand to DNA molecules in such a
way that a strand is given by the sequence of nucleotide bases which makes up
one string of the double helix. We do not insist that a strand always covers
the full length of a DNA molecule, connected substrings will also provide useful
applications of the concept.

A second main part of molecular genetics focusses on the way in which the
information encoded in DNA is used to build up other, bigger constituents.
Originally, the double helical string of nucleotides in DNA was claimed to have
the ability to replicate and also to produce the structural materials for all known
life forms. It was, however, early on realized that the DNA molecule in isolation
had neither of these properties. In fact, replication could only occur in the
presence of many other cell components. Furthermore, the DNA molecule does
not directly produce proteins, but acts by intermediate RNA molecules which
again, need the assistance of other macromolecules. In appropriate conditions of
pH, temperature, and availability of water, proteins of the kind required for the
viability of an organism are produced. DNA is not able to replicate itself, but
uses DNA polymerase which is itself instructed indirectly by the DNA. Other
materials must also be present for replication to occur. Growth of the chain
proceeds in the 5’ to 3’ direction, as the bases are written. Remarkably, DNA
polymerase has the property of being able to edit the growing strand. It edits
in the reverse direction to replication. DNA ligase is also required for rejoining
fragmented DNA.

During replication, DNA maintains its helical form. However, some unwind-
ing is necessary during the synthesis of new DNA. The site of this process is
called a replication fork. DNA replication starts at particular places and then
proceeds in opposite directions. However, one strand, the leading strand, is
replicated continuously, while the other, the lagging strand is replicated discon-
tinuously.
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Fig.5-2
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The process of replication is assisted by DNA gyrase, which changes the sense of
supertwisting of the molecule. Error rate in copying DNA is estimated as around
one base in ten million. However, damage may occur by physical or chemical
means. Even this is reduced by appropriate enzymes. A DNA endonuclease
may, for instance, locate and nick a damaged section. A polymerase may then
produce the correct sequence. Finally, a ligase may seal the DNA up again.

The DNA molecule is transcribed to produce an RNA molecule which is
then translated into a protein. We shall not enter into the nature of RNA, but
three forms are present in the cell, distinguished by their location or function.
mRNA, or messenger RNA is the template for RNA synthesis. tRNA, transfer
RNA, carries amino acids in the sequence dictated by the mRNA. rRNA is a
major component of ribosomes, but its precise function is still unclear. The
bases of RNA are those of DNA but with uracil (U) replacing thymine. In tran-
scription, the bases of RNA are complementary to those of DNA. The initiation
and termination of transcription are closely controlled by the DNA molecule.
However, there is no RNA polymerase editing action, so that the transcription
process is of much lower fidelity than that of replication. Termination may be
signified by a sequence of bases with some common characteristic. The resulting
transcript RNA is generally prepared in a piece larger than that subsequently
translated, and this post-transcriptional modification is central to the transport
of RNA from the nucleus.

The polynucleotide chain of the DNA strand and its transcript RNA strand
carries genetic information in the form of a code. Every triplet of three consecu-
tive bases, called a codon, dictates a specific amino acid for the final translation
process. There are 64 possible codons, but three of these are in fact signals for
chain termination. The code is degenerate, that is to say there is more than one
codon for most amino acids. In the eukaryote, most genes are discontinuous.
The coding sections are called exons, and the intervening sequences which are
not expressed are called introns. Mutations to the genetic material may occur
if there is a change of base sequence. There may be substitution of one base
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for another. There may be insertion or deletion of bases. The effects here may
go far beyond the immediate locality, since the entire reading frame for tran-
scription may be shifted, resulting in almost totally erroneous decoding. If a
purine is replaced by a purine, or a pyrimidine by a pyrimidine, this is a tran-
sition. A transversion occurs when purine is replaced by a pyrimidine or vice
versa. Spontaneous tautomerisation or other changes to individual bases are
also possible. In the eukaryote replication occurs at many thousands of places
simultaneously. At each of these forks new histones are formed and assemble
on the DNA of the lagging strand.

Clearly, the main mechanism here is the way in which amino acids and se-
quences of amino acids are produced in the cell which is driven and initiated
by DNA molecules. This process we labelled transition kinematics in Chap.3.
As stated already in Chap.3 the investigation and knowledge of transition kine-
matics marked a decisive step in the origin of molecular genetics. So transition
kinematics forms an essential part of molecular genetics. This suggests to work
out a model of it. We could try to do so, but abstain for two reasons. First, the
‘mechanism’ of transcription and translation, and of how amino acids are built
up is very clearly understood, the pictures indicating this model are found in
every textbook.46 Second, and more important from our standpoint, this model
is quite different from the basic model presented in Chap.2, and therefore not
in the scope of this book. In the following it will suffice for our purposes to
introduce a function EX which maps codons on amino acids. We may regard
this function as just capturing the input-output scheme but leaving the precise
way of constructing the output unanalyzed. The precise way in which amino
acids are constructed would be captured by a model of transition kinematics, if
we had introduced such a model.

Let us finish our survey by considering a third main area of research in
molecular genetics which deals with combination and recombination of DNA, or,
more precisely, of strands as introduced before. Although there are two strings
of polynucleotide, in replication only one is copied. This is known as semi-
conservative replication. Single such strings, or strands in our sense, combine
during meiosis which after fertilisation leads to the formation of a new genotype.
From this picture the immediate impression might be obtained that the GENO-
TYPE OF PROGENY could be stated with certainty if those of the parents
are known, and if we know exactly how the ‘parental’ strands combine during
meiosis. This view may be admissible for the haploid case, it is not, however,
for a ploidy of two or more. The process of crossing over, of recombination and
other rearrangements of the genetic material must then be considered. Though
these processes at the moment are still under investigation, it is recognized that
they do not occur in a random manner. Some parts of a strand are more prone
to break than others, and the process may itself be under genetic control. In
any case, however the ‘mechanisms’ may turn out, we may describe all the ways
in which parental strands combine to form GENOTYPES OF PROGENY in
terms of our model of combination kinematics from Chap.3. The meaning given

46For instance (Strickberger,1985) and (Goodenough and Levine, 1974).
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previously to the notion of a strand in molecular genetics immediately provides
us with molecular genetic configurations of strands. According to the definition
of Chap.3 these are sets of strands the quanta of which are consistently mapped
into corresponding spatial positions. A strand being taken as one string of a
DNA molecule we may pass over from a strand to its chromosome, namely the
chromosome consisting of the DNA molecule obtained by completing the strand
through its ‘missing half’ (plus the additional material of the chromosome).
Thus a configuration of strands yields a set of chromosomes with base-triplets
on the chromosomes (the quanta) endowed with respective spatial positions.
By observing such a configuration through its development over time we obtain
a model of combination kinematics. Under the present interpretation of the
technical concepts such a model describes the spatial rearrangements of chains
of nucleotides, and we may easily restrict attention to those phenomena which
occur during the ‘recombinatorial’ phase in meiosis.

We may now try to integrate the three ‘parts’ of molecular genetics described:
DNA, transition kinematics, and recombination, into one comprehensive picture.
Not unexpectedly, our model provides a nice frame for such integration. Clearly,
the structure of the DNA molecule as uncovered in molecular genetics gives fur-
ther detail, and material substance to the model component of GENOTYPES.
In accordance with the previous discussion we may specialise the notion of a
GENOTYPE in molecular genetics to refer to configurations of (molecular ge-
netic) strands. A GENOTYPE thus consists of a set N of chains of nucleotides,
each chain being just ‘one-half’ of a DNA molecule, and each member of the set
corresponding to one chromosome, plus a position function ψ assigning spatial
positions to the nucleotides. With respect to the quanta the finding that it is
triplets of bases, codons, which encode one amino acid each is decisive. There
would be no gain by choosing quanta smaller than such triplets.

More precisely, let us understand by a triplet a sequence of three of the four
bases: A,G,T,C with phosphodiester bonds among any two succeeding bases.
Once quanta are chosen as triplets in this particular way the ordering of quanta
required in the definition of strands may be defined by reference to chemical
notions. We say that two triplets B,B′ are ordered neighbours: B ≺ B′ iff they
are bound by a phosphodiester bridge such that the 3’-OH group of B meets
the 5’-OH group of B′. The complete order of a set Q of quanta now can be
defined as follows. Two quanta B,B′ in Q stand in the order relation < (i.e.
B < B′) iff there are quanta B1, ..., Bn in Q such that B = B1 ≺ ... ≺ Bn = B′.
The ordering so defined we call the natural chemical ordering. Altogether, then,
the genotypes in molecular genetics may be characterised as configurations of
strands the quanta of which are triplets, such that the ordering relation in each
strand is given by the previous definition. According to our interpretation of
strands the number of strands occurring in one GENOTYPE corresponds to
the number of chromosomes of the individuals considered in the model. This
number will be the same for all GENOTYPES that occur in one application, so
we may require that in one model all GENOTYPES have the same number, k,
of strands. By joining these requirements, we obtain a first axiom for molecular
models which describes the form of molecular GENOTYPES.
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AM1 There is a number k such that all GENOTYPES γ are configurations of
strands of the form 〈N, IR3, ψ〉 such that
1) N has exactly k elements (N = {s1, ..., sk})
2) for all i ≤ k: if strand si in N has the form 〈Qi, <i〉 then
2.1) each element of Qi is a triplet
2.2) <i is a natural chemical ordering on Qi

Condition 1 of AM1 entails that the orderings <i are linear, for linearity was
required in Chap.3 to hold for strands in general. Note that linearity does
not follow from the definition of a natural chemical ordering. AM1 therefore
excludes well known applications in haploids in which genotypes are circular.
We choose this restrictive version for matters of simplicity. It would be possible
to start with a weaker notion of strands in Chap.3 allowing for the circular
case, and to adjust the corresponding notions in this chapter and in Chap.7
below. The adjustment, however, involves some technicalities, and will not be
undertaken in this book.

The second area of research considered above was transition kinematics: the
transition from DNA to sequences of amino acids. As DNA was stipulated
as the essential ingredient of the GENOTYPES in molecular genetics, and as
GENOTYPES are the arguments of DETERMINER it follows that transition
kinematics covers the model component of DETERMINER. We only have to
choose the PHENOTYPES appropriately. Here some complexity arises from the
fact that GENOTYPES consist of whole sets of strands (sets of ‘chromosomes’).
Each strand giving rise to a sequence of amino acids, we encounter a set of
sequences of amino acids as being produced from one GENOTYPE. Though
this complexity is ultimately unavoidable we may reduce it for analytic reasons
and consider just the propagation of one strand into one sequence of amino
acids. Such reduction is admissible as long as no phenomena of interference of
one chromosome with the production of amino acids by another one is known.
Concentrating on just one strand the situation is such that the strand has to be
considered as a sequence of base triplets, each triplet possibly determining the
production of exactly one amino acid. Thus if the strand consists of k triplets
(and so of 3k nucleotides) it will give rise to a sequence of k, or less than k,
amino acids, and the ordering of the amino acids is determined by that of the
triplets on the strand. This suggests we assume that PHENOTYPES consist
of sets of ordered sequences of amino acids. Each sequence in a PHENOTYPE
corresponds to a strand of a GENOTYPE, and the sets of sequences and strands
are thus mapped one-one onto each other.

Now, in fact, an ordered sequence is nothing but a strand, so a PHENO-
TYPE is just a set of strands. In order to avoid confusion we distinguish
strandsG and strandsP in GENOTYPES and PHENOTYPES, when neces-
sary. The elements out of which the strandsP are formed are amino acids;
avoiding the term ‘quanta’ for these and using the symbol � to refer to the or-
der of amino acids on strandsP settles the notation. As with GENOTYPES we
may assume that all PHENOTYPES occurring in one molecular genetic model
have the same number of strands. Moreover, applications up to now are such
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that the number of strands in a PHENOTYPE is the same as that of strands
in the corresponding GENOTYPE. Very roughly, each chromosome gives rise
to ‘its’ strand of amino acids.

AM2 There is a number r such that each PHENOTYPE is a set of r strandsP
of amino acids, and r is identical with the number k of strandsG in the
GENOTYPES.

A strandP thus is a structure 〈A,≺〉 where A denotes the set of amino acids,
and � its ordering ‘along the strand’.

We might distinguish the different strands occurring in pheno- and geno-
types according to different types (different ‘kinds of chromosomes’), but such
distinctions vary from application to application and thus must not be included
in the general model. Moreover, the occurrence of repetitions of genetic material
as for instance in Drosophila forbids the assumption that strands of the ‘same
kind’ in different genotypes (or phenotypes) have the same lengths.

GENOTYPES and PHENOTYPES being specified we can turn to DETER-
MINER. As stated above, not all codons give rise to an amino acid, and among
the others there is some redundancy: some codons yield the same amino acids.
However, there is complete knowledge about which codon yields which amino
acid. So there is a function, call it EX (for expression), mapping codons into
amino acids, which moreover we know explicitly. It is given by the following
well known list which constitutes another axiom of molecular genetics.

AM3 EX(TTT) = EX(TTC) = Lysine
EX(TTA) = EX(TTG) = EX(CTA) = EX(CTG) = Asparagine
EX(TCT) = EX(TCC) = EX(GCT) = EX(GCC) = EX(GCG) = EX(GAT)
= EX(GCA) = Arginine
EX(TCA) = EX(TCG) = EX(AGT) = EX(AGC) = Serine
EX(TGT) = EX(TGC) = EX(TGA) = EX(TGG) = Threonine
EX(CTT) = EX(CTC) = Glutamine
EX(CCT) = EX(CCA) = EX(CCC) = EX(CCG) = Glycine
EX(CAT) = EX(CAC) = EX(CAA) = EX(CAG) = Valine
EX(CGC) = EX(CGA) = EX(CGG) = Alanine
EX(ATA) = EX(ATG) = Tyrosine
EX(ACC) = TRP
EX(ACA) = EX(ACG) = EX(GAC) = EX(GAA) = EX(GAG) = Cys-
teine
EX(AAT) = EX(AAC) = Leucine
EX(TAT) = EX(TAA) = EX(TAG) = Isoleucine
EX(TAC) = Methionine
EX(AAA) = EX(AAG) = Phenylalanine
EX(GTT) = EX(GTC) = Glutamina N.
EX(GGT) = EX(GGC) = EX(GGA) = EX(GGG) = Proline
EX(CTA) = EX(CTG) = Aspartic Acid
EX(CTT) = EX(CTC) = Glutamic Acid
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As already stated the letters A,G,C,T stand for: adenine, guanine, cytosine and
thymine, respectively.

In order to characterise DETERMINER in more detail we need a function,
called COR (for correlation) which to each strandG of a GENOTYPE assigns its
corresponding strandP in the PHENOTYPE. This function is necessary because
on both sides there are sets of strands so that it is not obvious which strandG
corresponds, or causes, which strandP . We may assume that this function does
not depend on the environment of a strandG as given by the other strandsG in
the GENOTYPE considered, or by the environment of the whole GENOTYPE.
So COR may be introduced as a function defined on the set of all strandsG
occurring in the different genotypes of a model. Let us write STRAND(G) to
denote this set (where G denotes the model’s set of GENOTYPES), and sim-
ilarly STRAND(P) to denote the set of all strandsP occurring in the model
which has P as its set of PHENOTYPES. For a given model of molecular ge-
netics with sets G and P of GENOTYPES and PHENOTYPES, respectively,
we then can write briefly

COR: STRAND(G) → STRAND(P).

Having identified the strandP which ‘belongs to’ a strandG we still do not know
the precise internal structure of that strandP , that is, precisely which amino
acids in which order occur in it. In order to produce that additional information
we have to refer to the function EX defined above which assigns amino acids to
triplets. What was said about COR also applies here. EX is independent of the
environment of a codon as given by the strand or the whole genotype in which
the codon occurs. So EX may be treated as a function defined on the set of all
triplets, TRIPLET, into the set of amino acids, A-ACID:

EX: TRIPLET → A-ACID.

In order to cope with the fact that some triplets just serve as markers, and do
not themselves give rise to an amino acid, we agree that A-ACID contains one
dummy element which is not an amino acid, onto which all and only the marker
triplets are mapped.

Using these two functions DETERMINER may be specified as follows. For
a given GENOTYPE containing a set of strandsG, each strandG s = 〈Q,<〉
of this set is mapped by means of function COR into a strandP : COR(s), and
COR(s) = 〈Q∗,�〉 is further specified by means of function EX as follows. We
start with the minimal element q1 of Q (‘minimal’ with respect to < ) and
map it to EX(q1). EX(q1) has to be the element in Q∗ minimal with respect
to �. Then the ‘next’ element of Q with respect to <, q2 is mapped into
EX(q2), and EX(q2) has to be ‘greater than’ EX(q1), i.e. EX(q1) � EX(q2),
and minimal in this respect, i.e. there is no quantum in Q∗ which lies properly
‘between’ EX(q1) and EX(q2). This procedure is iterated until we reach the
end of strand s, i.e. the maximal quantum of Q with respect to <. The set of
all strandsP of the form COR(s) obtained in this way forms a PHENOTYPE
which is uniquely determined by the GENOTYPE from which we start. So
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this PHENOTYPE may be taken as the function value of DETERMINER for
the initial GENOTYPE. We may formalize this definiton of DETERMINER as
follows.

AM4 If P and G are the sets of PHENOTYPES and GENOTYPES,
respectively, then there exist functions
COR: STRAND(G) → STRAND(P) and
EX: TRIPLET → A-ACID
such that for all PHENOTYPES π in P and all GENOTYPES γ in G the
following holds:
If π has the form {s∗1, ..., s∗k} and γ has the form 〈N, IR3, ψ〉 with N =
{s1, ..., sk} then:
DETERMINER(γ) = π iff
1) COR, restricted to N , is onto {s∗1, ..., s∗k}
2) for all i, j ≤ k, if COR(si) = s∗j and si, s

∗
j have the forms

si = 〈Qi, <i〉, s∗j = 〈Q∗j ,≺j〉 , respectively, then
2.1) EX, restricted to Qi, is onto Q∗j
2.2) EX, restricted to Qi, is order preserving, i.e.
for all q, q′εQi : q <i q′ iff EX(q) �j EX(q′)

1) may be rephrased as saying that function COR maps the strandsG occuring
in the GENOTYPE one-one onto the strandsP occurring in the PHENOTYPE.
Similarly, requirement 2) means that the function EX maps the quanta of each
given strand one-one onto the quanta of the corresponding (via COR) strand
such that the order among the quanta is preserved, i.e. such that triplets being
bound by a phosphodiester bond are mapped on amino acids which are ordered
neighbours. Note that the lengths of strandsG and strandsP need not be iden-
tical. The number of codons in a strandG may be greater than the number of
amino acids in its COR-image.

The third ‘part’ of molecular genetics addressed above deals with combina-
tion and recombination of DNA strings during meiosis and fertilization. This
is the area captured by COMBINATOR in our model. On the basis of the
previous specifications of GENOTYPES as configurations of strands we may
directly apply the notion of a combination kinematics from Chap.3. Recall that
a combination kinematics essentially consists of a sequence of configurations
of strands such that the final configuration consists of concatenations of sub-
strands taken from the two initial configurations (which are concatenated for
the sake of simplicity). Two GENOTYPES which form the arguments of COM-
BINATOR, and which we may assume to be compatible, are taken as the initial
configurations C,C ′ of the definition in Chap.3. Their strands are considered
through a sequence of changes involving combination, recombination, deletion,
insertion and others, until a final configuration C∗ is obtained. The set N0 of
strands from C and C ′ has to be chosen appropriately so that all strands in C∗

have been obtained as concatenations of sub-strands of strands in N0. The final
configuration by definition is a GENOTYPE of molecular genetics. So combi-
nation kinematics in its broadest possible application yields a transition from
two parental GENOTYPES to one GENOTYPE OF PROGENY.

95



This raises the question about the role and status of the probability coeffi-
cients occurring in the general model in the function values of COMBINATOR.
Are they redundant in molecular genetics? Would this mean that molecular
genetics is deterministic in some sense? At the present stage of development of
molecular genetics, these are important questions. In meiosis the GENOTYPES
physically conjugate and exchange varying amounts of material. This is not a
random process, however. Certain parts of the GENOTYPE are more prone to
change than others, and there may even be genetic control over the process. On
the other hand, as a matter of fact, differences in progeny occur within certain,
relatively stable probabilities, if large numbers of matings are considered. In
principle, there are two ways of accomodating for this fact. First, we might
schedule our models so that they just describe one individual occurrence of
mating. In this case, no probability coefficients are necessary, all progeny occur
‘with certainty’, and so do GENOTYPES and PHENOTYPES. On the basis of
such a model we might treat the probabilistic facts on large numbers of mat-
ings as constraints on the models. In this way the coefficients would naturally
be interpreted as relative frequencies (of models in which particular EXPRES-
SIONS and GENOTYPES did occur as a consequence of mating). The second
possibility is to incorporate the coefficients ‘directly’ in the models in the form
described in Chap.2 as probability coefficients of distributions of genotypes as
produced by COMBINATOR. In this case their interpretation is still that of
relative frequencies, the difference from the first approach being that these fre-
quencies cannot be calculated from the entity under consideration (one model
in the second, a set of models in the first case). We think that this difficulty in
calculation does not yield a serious objection, and is outweighed by the gain in
homogeneity. So we adopt the second way.

There is another argument in favour of this. Molecular genetics by going
to the finest possible level of detail ultimately should be able to uncover the
‘mechanism’ of control which leads to the occurrence of stable probabilities in
(re)combination. If this were achieved, the coefficients could be explained in
a non-probabilistic, non frequentist way. We have to reserve judgement about
whether this goal will be achieved, witnessing just the first steps in this direction.

Having agreed that COMBINATOR in molecular genetics should also pro-
duce distributions rather than single genotypes we have to admit that COMBI-
NATOR cannot be completely determined by means of combination kinematics.
We may state as an axiom

AM5 For all GENOTYPES γ, γ’, γ1, ..., γn and all α1, ..., αn:
if COMBINATOR(γ, γ’) =

∑
αiγi then for each i ≤ n:

γi can be obtained from γ and γ’ by means of a combination
kinematics

This axiom allows for indeterminacy in its ‘can be’ mode. Given two GENO-
TYPES γ, γ’, in general we simply do not know in advance which γi will occur
after mating.

Having located the three main areas of molecular genetics in three distin-
guished parts of our model we may now start from the model and ask about its
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remaining components: DISTRIBUTOR, MATOR, and APPEARANCE. As
we took the PHENOTYPES to consist of sets of strands of amino acids, there is
a far way to go from such PHENOTYPES to the full individuals, as well as to
gross expressions of individuals. The detailed study of the transition involved
here does not form an essential part of molecular genetics, it is better regarded
as belonging to biochemistry, cytology and embryology. However, the transi-
tion itself has to be included in our model. It is represented by APPEARANCE
which to each individual assigns its molecular genetic PHENOTYPE. MATOR
thus keeps its original meaning: it maps parental pairs into offspring produced
by them.

The reason why this underlying level is still needed in molecular genetics
becomes clear when we turn to DISTRIBUTOR. Here again, the possibility
we met in connection with COMBINATOR of formally treating the probability
coefficients comes up. Again we choose that version in which the function values
of DISTRIBUTOR are distributions rather than single PHENOTYPES. This
leaves us inside the boundaries set by our model. The probability coefficients
occurring in those distributions have to be interpreted as relative frequencies (of
the occurrence of the respective PHENOTYPE in a large number of matings
with parents of the same parental PHENOTYPES). Now such frequencies can
be determined, and are meaningful, only if we refer to the individual level. If
we do not know how to associate amino acids with full individuals we loose any
rule for counting them, and the coefficients become meaningless. It must be
noted that this account of the coefficients is not entirely uncontroversial.

For the moment, we may summarize the above considerations as stating
that molecular genetic models can be obtained, in fact, as specialisations of our
basic genetic model. The GENOTYPES are specialised to (sets of) strands of
nucleotides as occurring in DNA, the PHENOTYPES are specialised to (sets of)
strands of amino acids, DETERMINER is specialised to function as described by
transition kinematics, and COMBINATOR as described by combination kine-
matics. A gap remains with respect to COMBINATOR since the combination
kinematics leading from parental strandsG to those of progeny do not tell us
precisely what strandsG in progeny we should expect. This gap will perhaps be
closed in the future by the development of a ‘combination dynamics’, but only
the first steps towards this end can be preceived to-day.

The models for molecular genetics obtained in this way are still pretty gen-
eral, they may serve as a basis for further specialisation. This should be expected
from the general remarks made in Chap.2 on the structure of comprehensive the-
ories. No doubt, molecular genetics is a comprehensive theory, so we expect it to
exemplify the strucutre of a theory-net: with basic models on top and a tree-like
structure of specialisations originating from there downwards. Let us indicate
very briefly some of the specialisations that can be made. First, we may of
course add further details about the chemical structure of DNA, RNA etc.: the
atoms, the structure of the molecules, the kinds of chemical bonds, distances
and spatial configurations. Such models are particularly useful for computer
applications on the one hand, and may be needed in order to investigate the
genetic control in recombination on the other hand.
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Second, we may specialise the expression function EX introduced in con-
nection with DETERMINER to be the result, in fact, of a model of transition
kinematics. That is, we add a transition kinematics and require that EX-values
are produced along the lines of such kinematics. A third specialisation is ob-
tained when we insist that the strandsG should have the full length of DNA
molecules. In the present formulation there is no requirement to that effect.
The strands may be rather short in comparison to those of DNA. This gener-
ality is intended and necessary, for in most applications only a small portion
of a full DNA molecule is investigated. On the other hand it seems difficult to
formulate a requirement that strandsG should cover complete DNA molecules
in general, i.e. in a way independent of the kind of individual, and even of the
particular chromsome under investigation. For different chromosomes have dif-
ferent lengths, and still greater variety obtains from species to species. Thus it
seems that specialisations concerning the length and possibly the way in which
nucleotides follow one another have to be formulated in conncetion with a simul-
taneous restriction to particular species and even chromosomes of those. This
is not at all disturbing. On the contrary, in this way we obtain a very large
number of different specialisations, a very big theory-net, and thus the picture
of a very comprehensive theory.

Further ways of specialisation are found in connection with recombination.
Formally, particular models of recombination have to be added to the combina-
tion kinematics which is already present governing COMBINATOR. There are
different possibilities here. In genetic recombination, a new strand is formed
by the breaking and rejoining of existing strands. In transposition, material is
moved from one site to another at the same or another chromosome or DNA
molecule. Single stranded regions of DNA are intermediates in genetic recom-
bination and enzymes are important in the process. Rejoining of DNA occurs
at regions of high homology where the sequence of codons for the two strands
is very similar. Rejoining can occur at many points of the DNA, subject to this
previous requirement. In E.Coli such general recombination is dependent on the
rec family of genes. One property of these is to produce single stranded DNA
which can then enter a DNA molecule.

Such general recombination can change the pairing of nucleotides, but does
not introduce or delete material. In practice translocatable elements such as
the plasmids may be used for the purpose of transduction of bacteria. The
location of insertion for such elements is not defined by their homology, but
by DNA-protein-interaction. This is dependent on the element having insertion
sequences at both ends. Such elements have been invaluable in the development
of genetic engineering.

There are three main models of recombination. In the Holiday model (see
Figure 5-3), DNA strands for the same polarity are first nicked at homologous
sites and then exchanged to produce symmetrical heteroduplex DNA.
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Fig.5-3
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The crossed strands known as Holiday junction may then be resolved with or
without exchange of flanking markers, leading to crossover or non crossover
relative to these.

Meselson and Radding varied this model47 (see Figure 5-4). Here recombi-
nation is initiated by a single nick which primes the DNA repair process. As
a result, a single strand is displaced which can pair with a homologous region
of the other chromatid. However, the joint molecule is degraded and the asym-
metrical heteroduplex DNA enlarged by DNA synthesis on the donor chromatid
coupled with degradation on the recipient duplex. Branch migration and liga-
tion of the nicks produces a Holiday junction which is isomerised. Symmetrical
heteroduplex DNA can be formed by branch migration of the Holiday junction.
Again, resolution can lead either to a crossover or non crossover configuration.

47(Meselson and Radding, 1975) : Proc.Nat.Acad.Sci.USA 72: 358-61.
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Fig.5-4
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Third, a double strand break repair model was proposed by Szostak et al.48 (see
Figure 5-5).

Fig.5-5 (after Szostak 1983, left hand side: crossover)

- -
�
�� A

AA�
��

3’ 1
23’ 2

3
4

1

�
�� -

�
�� A

AA

1
2

4
3

3’

�
��A
AA �

��A
AA

4
3

2
1

48(Szostak et al., 1983).
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Here, recombination is initiated by a double strand break in one chromatid,
which is enlarged by exonucleases so as to form a gap with 3’ single stranded
ends. One of these then invades a homologous region on the other intact chro-
matid, forming a small joint molecule. This is enlarged by repair
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Fig.5-6
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synthesis which is primed by the invading 3’ end. In this way the original
chromatid is regenerated as a single strand. Finally, repair synthesis fills the
gap, using the 3’ end as primer. In other words, a double stranded gap is
repaired by two rounds of repair synthesis.

There are three stages in all of these models. First, the formation of single
stranded DNA regions. Second, the formation of heteroduplex DNA with the
generation of Holiday junctions. Finally, the resolution of the cross stranded
structure by cutting and ligation of exchanged ends.

Under physiological conditions, one replication fork is the major source of
single stranded DNA. The synthesis of single stranded replicative fragments on
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the lagging strand leaves single stranded DNA between those fragments already
replicated. Figure 5-7 shows a model for daughter strand gap repair.49

Fig.5-7
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Let us now look at the application process corresponding to the molecular ge-
netic models. Application of the models of transmission genetics had a clear
direction: one has to work ‘bottom up’, i.e. first to gather data about the levels
of MATOR and DISTRIBUTOR, and then fill in the theoretical Ueberbau as
given by GENOTYPES and COMBINATOR, together with special hypotheses
about the form of the latter, if necessary. The situation in molecular genetics is
less clear. On the one hand, GENOTYPES have now become identifiable ma-
terial objects, and the processes of combination and recombination of strands
of the GENOTYPES come ever closer to being ‘directly observable’. From this
one might expect that the respective parts of the model now can be filled in in a
more direct way, by gathering data in the same way as this is done for MATOR
and DISTRIBUTOR in transmission genetics. It seems that GENOTYPES and
COMBINATOR can be determined in a non-hypothetical way.

For GENOTYPES this is indeed the case. There are various different meth-

49(Rupp et al., 1971).
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ods to get direct information about the structure of DNA and its spatial order-
ing in the chromosomes: from electron microscopy to chemical or radioactive
markers. For COMBINATOR the situation is more involved. It is still diffi-
cult to obtain direct data for combination kinematics. More is known about
recombination in vitro than in vivo, and comparatively little is known about re-
combination in higher eukaryotes. In particular, the probabilities of differences
in large numbers of offspring are still far from being explained by reference to
the physico-chemical structures of the strands during meiosis and fertilization.
Up to now there is no access to the coefficients in the values of COMBINA-
TOR which avoids relative frequencies as calculated from observed progeny. In
other words, there is no specific molecular access to these coefficients. Usually,
they are determined as in transmission genetics: by observing large numbers of
processes of matings with parents of the same kind, and determining relative
frequencies of an expression in the progeny produced. Such procedures at best
yield the coefficients at the level of PHENOTYPES. In order to identify the
coefficients from PHENOTYPES with those occurring at the level of GENO-
TYPES a further hypothesis is necessary. Relative frequencies at the level of
strands of DNA are not available yet.

We conclude that although the change from transmission genetics to molecu-
lar genetics provided new access to parts of the genetic models that were purely
hypothetical before, it did not provide full access to all parts of the model.
Some parts still retain a kind of hypothetical character and have to be assumed
hypothetically. Roughly, then, the process of application of molecular genetic
models fits into the general scheme presented in Chap.2.

In the course of molecular genetic applications a tight interplay with trans-
mission genetics is usually observed. One well established pattern is this. A
gross phenotype or some of its expressions are related to a genotype or some
genes in transmission genetics. By studying recombination frequencies, the link-
age map of the genes is determined. Now for some of the expressions a chromo-
somal locus may be found by cytological studies. On the hypothesis that the
linkage map corresponds to the way in which the genetic material is ordered on
the chromosome, this leads to a distinction of various parts of the chromosome as
corresponding to the expressions under investigation. Once this -hypothetical-
relation is accepted one may start to investigate the distinguished chromoso-
mal loci by molecular means proper. A classical study in which an application
of transmission genetics prepared the way for an application of molecular ge-
netics is that of Yanofsky and his colleagues.50 He appreciated the need for
recombination studies in locating specific DNA sequences. In order to reach the
small genetic map distances which would correspond to the scale of the DNA
molecule, however, it was necessary to use a bacterium or a bacterial virus, since
these could replicate rapidly, and provide the vast numbers of crossings needed.
Distances were inferred from the frequency with which parent organisms, each
with at least one mutation in the same gene, gave rise to offspring in which
neither mutation is present. Yanofsky worked with the tryptophan synthetase

50(Yanofsky, 1964).
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enzyme of E.Coli. A set of bacterial mutants with mutations at many sites
on the A gene was used in transduction experiments. In this procedure, virus
progeny act rather as sperm, and the status of MATOR and COMBINATOR is
little affected. However, for such small map distances, and so many mutations,
merely ordering the sites is sufficient.

The molecular application began with analysis of the amino acid sequence
of the enzymes produced. Ultimately, the identity and location of all 267 amino
acids in wild type and mutant strands was established. From this, the possible
DNA triplets responsible could be given. In general, such exhaustive analysis
is extremely difficult, although the difficulty is technological rather than funda-
mental. Once a trait has been related to a specific protein, it must further be
related to individual polypeptide chains. Only then could relations to specific
sequences be hoped for. Nonetheless, such exhaustive analysis of the human
genome is currently being contemplated and undertaken.51

A more immediate approach is to locate the polypeptide and hence the amino
change responsible for a specific character difference, and then relate this to any
DNA changes possible. In sickle cell anaemia what is of more direct significance
than the entire structure of the haemoglobin chains is that there is a change
from glutamic acid to valine at the sixth position. This is probably due to the
substitution of an adenine group for a thymine group in the DNA sequence
responsible.

The question may be raised whether this type of interplay is not just fre-
quent but even necessary for molecular genetics. In other words, the question is
whether molecular genetics can be applied independently of transition genetics
at all. This question is important in order to obtain a clear identification of
molecular genetics. If every molecular genetic application depends on previous
transmission genetic knowledge then molecular genetics would strongly depend
on transmission genetics at least in a practical sense. We think that the question
can be answered in favour of independence. There seem to be cases -however
rare- in which molecular genetics applies without reference to non-molecular
chromosomal structure or to a linkage map. These cases are probably restricted
to in vitro situations.

51(McCusick, 1989).
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Chapter 6

Stochastic Models

The models considered up to now were static, or at least quasi-static. They
covered only the transition from parents to progeny, or from one generation to
the next. Often, the data available for one such transition are insufficient in
order to cut down the genetic content to a sufficient degree of determinateness.
In population studies often it is difficult or impossible to prepare pure parental
populations, i.e. populations all of whose individuals have one genotype. In the
study of human inheritance experimentation is hardly feasible, statistics of whole
populations usually incomplete, and transitions to the next generation slow so
that one has to be satisfied and to work with sparse data scattered over several
generations or over a population in a non-random way. In population studies
generalisation to ‘impure’ cases in which parental populations are characterised
by distributions of genotypes rather than by single genotypes, straightforwardly
leads to the formalism of genetic algebra which is convenient to trace and cal-
culate the development of distributions of genotypes through many generations.
In the human area pedigrees became an important area of research. In this
chapter we extend our model so that developments over many generations -not
just two- can be covered. It is difficult to describe such extended models for the
two levels of applications: individual level and level of populations, in exactly
the same terms. We therefore introduce two different models, the first covering
only populations proper the second dealing with inheritance at the individual
level. Both extended models we call stochastic models because they comprise
the properties of stochastic processes.

In Chap.2 we used the term ‘genetic individual’ to cover individuals proper
as well as populations. Populations were considered as sets of individuals, and
were distinguished from each other by means of differences in phenotypes. A
population might be regarded as pure if all its individuals have the same pheno-
type. However, a population may be pure in this sense even if its members have
different genotypes. So the notion of purity is a difficult one, and should not
be positioned in the centre of interest. In particular, we cannot generally adopt
the characterisation of populations as sets of individuals with equal phenotype
as a strict definition. Many authors use the term quite freely, presupposing that
the individuals making up a population under study can be distinguished from
others by whatever criteria, possibly peculiar only to the particular case. We
adopt this liberal use here and in the following we will understand by a popu-
lation any set of individuals, leaving the criteria of identity to ad hoc treatment
in each case.
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The natural approach to extend our model as applying to populations is to
‘glue’ one such model to the next so that a population of offspring in the pre-
ceding model is taken as one of the two parental populations which occur in the
succeeding model. In this way we obtain a sequence as depicted in Figure 6-1
in which circles denote parental populations and rectangles denote populations
functioning as parental as well as as offspring populations, the bars at the left
indicating the generations.

Fig.6-1
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Such a model looks inhomogenous, or ‘open’, because the ‘new’ parental popu-
lation needed in each step is added externally. In order to close the model we
have to take each of the ‘filial’ parental populations as being offspring popula-
tions, too, i.e. to turn all circles (except the two initial ones) into rectangles.
But further adjustment is necessary in order to obtain a satisfactory picture.
In particular, we have to take into account that several different populations of
offspring may result from two parental populations which brings us back to the
problem just mentioned, of how these should be distinguished from each other.

The most elegant extension is obtained by using a general, unspecific notion
of population, by lumping together all offspring into one big such population in
which different phenotypes may be present, and by generalising the two parental
populations to form one big ‘parental’ population, also containing different phe-
notypic individuals. In this way a homogenous model is created which consists
of just one comprehensive population in each generation, depicted by the rect-
angles in Figure 6-2.
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Fig.6-2
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The sets of individuals in each generation are denoted by It, and we will refer
to these sets as ‘generations’ in the following.

The distinctions between the different parental populations and the different
populations of offspring are now no longer expressed as distinctions between pop-
ulations, but as distinctions of phenotypes within the ‘same’ population. Thus
by splitting a comprehensive population pop into two: pop = pop1 ∪ pop2

where individuals in pop1 have phenotype π1 and those in pop2 have pheno-
type π2 we obtain our initial distinction of two parental populations. Simi-
larly, by splitting pop into several subpopulations: pop = pop1 ∪ ... ∪ popn
we may represent the previous distinction between different populations in off-
spring. Formally, it is not necessary to introduce the corresponding subsets
of APPEARANCE and PHENOTYPE. If pop is a set of individuals, and π
a PHENOTYPE then the set of those members of pop which have π as their
phenotype, popπ, is defined as

popπ = {i ε pop/ APPEARANCE(i) = π}.

By letting π vary through all phenotypes present, the subsets popπ exhaust
the original population pop. Instead of referring to the sets popπ it is usually
sufficient to talk about their numbers of elements. The cardinality of popπ is
just the relative frequency of phenotype π’s occurring in population pop. So
the way in which a given population pop splits up into different subgroups is
uniquely represented by the corresponding genetic distribution of relative fre-
quencies. This distribution, denoted by p, assigns a number to each phenotype,
and therefore is a function from the set of PHENOTYPES present in a model
to the set of real numbers. In the present context we denote the set of PHE-
NOTYPES in a model by PHENO, so that

p: PHENO → IR

is such that all function values are non-negative and sum up to one. p(π) =
α means that α is the relative frequency of phenotype π in the population
considered.

In this way, the earlier distinctions between populations are replaced by
genetic distributions on the populations present in each generation. Using t
as an index for different generations we may write pt for the distribution of
phenotypes in the population It of the t-th generation. Though it is not at
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all easy to distinguish the succeeding generations (more to this below), in the
present model this distinction is adopted as primitive. That is, we regard it as
being determinable by external means, varying with the model under study.

Accepting this basic structure let us see what happens to the different prim-
itives of our original model. Clearly, the vertical operators, APPEARANCE
and DETERMINER should be taken over as they are, and in addition should
be kept constant over time. The latter requirement may be expressed as a con-
straint over different generations. If an individual occurs in different generations
it keeps its phenotype, and if a genotype occurs in different generations, its cor-
responding phenotype as given by DETERMINER also remains identical. With
respect to individuals one might try to sharpen the notion of a generation so
that one individual cannot belong to different generations. This approach works
well at the individual level of pedigrees to be considered below. At the level of
populations, however, it creates an unrealistically strict notion of a generation.
Often, we are not able to trace all the individuals, and to determine whether all
individuals in generation number t + 1 are offspring from generation number t
-whatever the way in which generations are empirically determined.

By constrast, all the horizontal operators of the original model have to be
changed. In the generalized picture we may have more than two phenotypically
distinct sets of individuals which in one generation function as ‘parental pop-
ulations’. So there is no natural way to establish just one MATOR function
between two succeeding generations. We would need several of them, according
to the number of parental sets involved. But even if we use several MATORS
to provide a connection between succeeding phenotypic sets the problem is how
to tell which set(s) of offspring belong to which parental sets of individuals.
However, since our interpretation here is in terms of populations conceived as
sets of individuals, we may circumvent the problem by retreating to a MATOR
function operating at the individual level which we denote by INDMATOR. IN-
DMATOR assigns sets of individuals (offspring) to certain pairs of individuals
(parents). Now the link from one generation to the next is established simply
by taking the latter as consisting of the union of all sets of progeny produced
by INDMATOR from pairs in the former population for which INDMATOR is
defined (i.e. which produce offspring at all). We choose INDMATOR not to
depend on time because, in a certain sense, the genetically relevant time scale
is determined by means of INDMATOR.

For DISTRIBUTOR, a similar situation arises. Since populations in one
generation may contain individuals of more than two phenotypes we cannot
apply just one DISTRIBUTOR of the format introduced in Chap.2. Rather, we
had to apply several of them but again, there would be a problem of keeping
them apart. Adopting the notation just introduced, we may see the effect of
DISTRIBUTOR as providing a transition from one distribution of phenotypes
in one generation to another such distribution in the succeeding generation. So
DISTRIBUTOR is replaced by transitions of the form

pt =⇒ pt+t

where t + 1 denotes the point or short period of time immediately succeed-
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ing t. It is not necessary to introduce a new function symbol to express such
transitions. Adopting the well known approach in probability theory we may
regard the sequence p1,p2, ...,pt, ... of genetic distributions as describing one
underlying process of change which expresses itself in the change of probability
distributions,52 that is, as a stochastic process. Formally, a stochastic process is
a sequence of probability measures, all over one common σ-algebra.53

Concerning COMBINATOR we proceed in exactly the same way by referring
to genotypes instead of phenotypes. The function values of COMBINATOR
were genetic distributions of the form∑n

i=1 αiγi

where {γ1, ..., γn} is the set of all genotypes under consideration (ordered in
some conventional way). Generalising at the ‘parental side’ we obtain a func-
tion mapping distributions of genotypes as occurring in one generation to such
distributions in the succeeding generation. If we denote the distributions by p∗t ,
t indicating the generation, we have transitions of the form

p∗t =⇒ p∗t+1

just as in the case of phenotypes. The main difference, indicated by the asterisk
is that we now deal with distributions of genotypes rather than of phenotypes.
Again, the sequence p∗1,p

∗
2, ...,p

∗
t , ... of these distributions may be regarded as a

stochastic process. The extended model therefore (among other things) contains
two stochastic processes p and p∗, p describing the change of the distributions
of phenotypes ‘over time’, i.e. in the course of succeeding generations, and p∗

describing the change of distributions of genotypes. This central feature justifies
the label ‘stochastic model’.

Summarizing these considerations we obtain an extended model of the fol-
lowing form:

〈T,<, J,INDMATOR,PHENO,GENO,APP,DET,p, p∗〉

the different components of which have the following meaning. T is a finite set of
indices for generations which also may be regarded as a set of points or periods
of time, and < is a linear ordering of the elements of T . Since T is required
to be finite we can speak of that element of T which immediately succeeds a
given one, say t (provided t is not the ‘last’ one), and denote it by t+ 1. In the
‘generations’ interpretation t+1 is the index of the generation It+1 immediately
succeeding the generation with index t.

J is the overall set of (proper) individuals occurring in the model, i.e. the
set of all individuals occurring in the different generations, and INDMATOR a
function

INDMATOR: J × J → Po(J)
52As already noted we do not use the notion of a probability distribution in its full strength

but use the weaker notion of a genetic distribution.
53See (Bauer, 1974), for details.
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assigning to all pairs of individuals the set of offspring produced by those. Po(J)
denotes the power set of J . The function value INDMATOR(i, j) can be empty,
in particular the empty set will be produced for pairs which did not coexist
in one generation. We do not try to formally disentagle the problem arising
from the possibility of one individual mating with another one as well as with
further offspring resulting from that mating for the distinction between different
populations. The model assumes that this problem is somehow solved in each
particular application. A trivial solution would consist of adding an index t
to any individual and to INDMATOR, denoting the generation in which the
individual or a process of mating is observed. However, this would only shift
the problem to the determination of T and of its ordering, <.

PHENO and GENO are finite sets, of phenotypes and genotypes, as before,
the elements of which are denoted by π, πi and γ, γi, respectively:

PHENO = {π1, ..., πr}, GENO = {γ1, ..., γs}.

In general we do not assume any particular order of these pheno- and genotypes,
but when we switch to the ‘sum’ notation

∑
αiπi or

∑
αiγi, some conventional

order (which really is irrelevant to the formalism) is introduced. Though the
occurrence of new pheno- or genotypes, as well as the deletion of some of them,
occurs in reality, we choose to exclude these possibilities from the present, ba-
sic model for reasons of simplicity. One effect of this choice is that the overall
collections of pheno- and genotypes may be regarded as relevant to each gener-
ation.

APP and DET are as in the original model. APP assigns a phenotype to
each individual

APP: J → PHENO

and DET assigns a phenotype to each genotype:

DET: GENO → PHENO.

No dependency on time or generations is provided for. In case of APP this
amounts to individuals keeping their phenotypes when they occur in more than
one generation. DET’s independence of generations follows from that of the two
sets of pheno- and genotypes just stipulated.

The sets of pheno- and genotypes give rise to corresponding sets of genetic
distributions D(PHENO) and D(GENO). Members p of D(PHENO) formally
are functions

p:PHENO → IR

such that p(π) ≥ 0 for all π ε PHENO and
∑
πεPHENO p(π) = 1. Analogously,

members of D(GENO) are functions p∗

p∗ : GENO → IR
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such that for all γ ε GENO, p∗(γ) ≥ 0 and
∑
γεGENO p∗(γ) = 1. As before,

we will often write such distributions in the more convenient form
∑
αiπi and∑

βiγi where the πi and γi vary in the sets GENO and PHENO, respectively,
and αi, βi are the corresponding function values of the distributions, i.e. αi =
p(πi) and βi = p∗(γi). This notation assumes that PHENO and GENO are
ordered, but the order is not made explicit.

Finally, we require that p and p∗ are stochastic genetic processes over PHENO
and GENO wrt. T , respectively. By this we mean that

p : T× PHENO → IR, p∗ : T× GENO → IR

are functions assigning non-negative real numbers to points of time and phe-
notypes (respectively genotypes), such that for fixed time index t, pt and
p∗t are genetic distributions. Here pt and p∗t are formally defined by setting
pt(π) = p(t, π) and p∗t (γ) = p∗(t, γ), so that pt : PHENO → IR and p∗t :
GENO → IR have the right type to be Γ-distributions. This completes the
description of the extended model for the case of populations.

In retrospect let us make precise the connection between the stochastic Γ-
processes p and p∗ and the corresponding original operators DISTRIBUTOR
and COMBINATOR. Consider some fixed generation It ⊆ J different from
the last one in the extended model. Suppose that It contains individuals of
just two phenotypes π1, π2. Then It can be split into two subsets It,1 and
It,2 such that members of It,i have phenotype πi, respectively. These two
populations wrt. to DISTRIBUTOR may be regarded as parental so that
DISTRIBUTOR(π1, π2) =

∑
αiπi represents the distribution of phenotypes

of their offspring in the following generation It+1. In the extended model
this distribution is given by pt+1. So, in the case considered, pt+1 equals
DISTRIBUTOR(π1, π2). In the general case It will contain members of more
than two phenotypes, so It has to be characterised by a full Γ-distribution
pt =

∑
δiπi. Splitting It into two subsets It,1 and It,2 in whatsoever way,

the subsets will have their own Γ-distributions, say
∑
αiπi and

∑
βiπi. Now,

if for each pair 〈πi, πj〉 of phenotypes we know the resulting Γ-distribution
DIST(πi, πj) =

∑
k δ

ij
k πk which DISTRIBUTOR assigns to that pair we may

calculate the overall distribution for the next generation as

(6.1)
∑
k(

∑
i,j αiδ

ij
k βj)πk,

on the assumption that matings between any two individuals are equally prob-
able. To see that this formula is correct, note that for each pair 〈πi, πj〉 the
probability of mating is αiβj so the probability that this pair produces pheno-
types πk in the next generation is

αiβjδ
ij,
k ,

and the overall probability that phenotype πk is produced is obtained by sum-
ming over all pairs 〈i, j〉: ∑

i,j αiβjδ
ij
k .
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This is just the coefficient of πk in the Γ-distribution (6.1). Rearranging sum-
mation in (6.1) we obtain: ∑

i,j αiβj
∑
k δ

ij
k πk

i.e.

(6.2)
∑
αiβj DISTRIBUTOR(πi, πj).

In this way the transition from pt to pt+1 can be expressed in terms of DIS-
TRIBUTOR by (6.2) under the assumption of random mating.

In the same way a connection is established between p∗ and COMBINATOR.
If generation I t splits up into two subpopulations with genetic content γ1, γ2,
respectively, we may calculate COMBINATOR(γ1, γ2) =

∑
αiγi which, in this

case is just p∗t+1. In the general case, by splitting the Γ-distribution
∑
δiγi of

It into two distributions corresponding to some partition of It,
∑
αiγi,

∑
βiγi,

we may calculate the coefficients of p∗t+1 as before

(6.3) p∗t+1 =
∑
k

∑
i,j αiδ

ij
k βjγk

where δijk are the coefficients occurring in COMBINATOR(γi, γj) =
∑
k δ

ij
k γk.

Written differently, (6.3) becomes

(6.4)
∑
αiβj COMBINATOR(γi, γj).

In these calculations only one step from generation It to the next, It+1, is con-
sidered due to the corresponding ‘local’ nature of our operators DISTRIBUTOR
and COMBINATOR. Of course, the extended model contains several succeeding
transitions of that kind. The question therefore arises of whether in a sequence
of transitions of the above form we may use the same DISTRIBUTOR and
COMBINATOR in each step. Intuitively, assuming that DISTRIBUTOR and
COMBINATOR do not change over time means that the rates of segregation,
and therefore the law governing the whole process of reproduction, remain sta-
ble. A priori such an assumption might definitely be wrong. However, genetic
experience shows that there is a wide range of phenomena in which some sta-
bility of this kind can be found.

A distinction has to be made here between the levels of pheno- and geno-
types. Strictly speaking, the genetic laws in their idealized, theoretical form are
formulated for genotypes, so the question of time-independent laws is primarily
a matter concerning COMBINATOR. The distributions of phenotypes in most
applications are empirically determined and therefore subject to the inaccuracy
to be met in all areas of quantitative data. Nevertheless, if the genetic laws
remain stable over time, and if there is sufficient fit between genotypic and phe-
notypic distributions, the latter also have to change in essentially the same way
as the former throughout the process, and therefore the ‘laws’ governing the
change of phenotypic distributions will also be stable over time.

If an assumption of stability is made we arrive in the field of genetic algebras.
The essential feature of genetic algebras is a multiplicative operation on entities
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of the form of genetic distributions. Consider a finite set G = {γ1, ..., γn} and
the set D(G) of all formal expressions of the form∑

αiγi

over G which is a superset of D(G). On this set a multiplication is defined by
reference to given numbers δijk , i, j, k = 1, ..., n :

(6.5) (
∑
αiγi)(

∑
βiγi) =

∑
k(

∑
i,j αiδ

ij
k βj)γk

where the δijk are required to satisfy:

(6.6) 0 ≤ δijk ≤ 1 and
∑
k δ

ij
k = 1 for all i, j ≤ n

The set D(G) endowed with its natural structure of a vector space and a multi-
plication defined by (6.5) is called a gametic algebra and the numbers δijk which
serve to define the multiplication are called segregation coefficients. This label
is justified for the right hand side of (6.5) may be rewritten as∑

i,j αiβj(
∑
δijk γk)

which, in case of proper Γ-distributions is nothing but∑
i,j αiβjCOMBINATOR(γi, γj).

So the δijk are the coefficients according to which genotypes γi and γj combine
in producing genotype γk.

Gametic algebras are obviously non-commutative. They provide one exam-
ple of genetic algebras. The general notion of a genetic algebra as introduced
by Schafer54 requires some technical algebraic preliminaries, in particular the
notion of baric algebras, which are not central to our subject. So we do not
attempt to go further and introduce a precise definition of genetic algebras.
Precise definitions are found, for instance, in (Woerz-Busekros, 1980).55

Turning now to the level of inheritance among individuals without regard of
populations we take a new, direct way to pedigrees. We start from a general
notion of a pedigree which may be specified in various ways so as to yield
models covering sequences of generations. Our model leans heavily on the work
of Cannings et al..56

Roughly, a pedigree can be imagined as a tree-like graph the nodes of which
denote individuals and matings (which also are called marriages in the litera-
ture). Two individuals mating and producing offspring is depicted as follows.

54(Schafer, 1949).
55(Woerz-Busekros, 1980), p.40.
56(Cannings et al., 1978).
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Fig.6-3
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The white nodes denote individuals in genetic order top-down, while the black
node denotes a marriage. The same scheme may be conceptualised in a more
functional way by saying that the two parental individuals on top are related by
a binary relation which we call marr, and the individuals at the bottom are the
offspring of the latter. This may be expressed by means of a function offs which
assigns sets of individuals (i.e. of offspring) to pairs of individuals (parents). In
genetic context each individual has at least a phenotype, and we will provide
for the possibility of assigning even genotypes to some or all individuals. Thus
a pedigree is a structure of the following form

〈J, P,G,marr, offs, pheno, geno〉

which satisfies the follwing requirements:

AP1 J, P,G are non-empty, finite sets, and pairwise disjoint

AP2 marr is a binary relation on J

AP3 offs : J × J → Po(J) is a partial function

AP4 pheno : J → P is a partial function

AP5 geno : J → G is a partial function

AP6 for all i, j ε J : offs is defined for 〈i, j〉 iff marr(i, j)

AP7 for all i, j ε J : offs(i, j) = offs(j, i) and
(marr(i, j) iff marr(j, i))

AP8 for all i, j, k, l ε J : if {i, j} 6= {k, l} then offs(i, j) and
offs(k, l) are disjoined, and offs(i, i) = ∅

AP9 any two individuals i, j in J are connected by a chain of marriage or
offspring

The sets J, P,G are similar to I,P,G introduced at the end of Chap.2. J is
a set of individuals proper, P a set of phenotypes, and G a set of genotypes.
marr(i, j) symbolises that individuals i, j mate. By AP6 this holds if and only if
the offspring function offs is defined for the pair 〈i, j〉. We agree that by writing
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down offs(i, j) in the following we always presuppose that offs is defined for
〈i, j〉. Thus AP7, for example, presupposes that 〈i, j〉 and 〈j, i〉 are both in the
domain of offs. The function value offs(i, j) may be the empty set. Besides
the trivial case this provides room for the theoretically more interesting case of
lethal genes. offs being defined only for married pairs can only be a partial
function. The pheno- and genotypes are assigned to individuals by functions
pheno and geno which also may be partial. This allows for situations where the
presence of some individual in a pedigree is known but not its phenotype, not to
speak of its genotype. AP7 requires marriage and offspring to be symmetric in
the parents. Their order does not matter. AP8 bears some empirical content. It
states that different parental pairs produce different offspring. In other words,
an individual cannot be produced by two different pairs of parents. Also, it
cannot be produced by one parent mating with itself (which may be the case for
genetic individuals which are populations). AP9 requires the whole pedigree to
be connected. There are no ‘isolated’ individuals which are neither married to,
nor offspring or parents of, other individuals in J . More precisely, AP9 requires
that for any two individuals i, j in J there exists a chain i1, ..., in in J such that
i = i1, ..., in = j, and any two succeeding ik, ik+1 in the chain are related either
by marr, or such that ik is a parent of ik+1 or ik+1 is a parent of ik.

In this general form the concept of a pedigree bears little genetic con-
tent. It gets content if further special assumptions on pheno, geno, or the
tree-structure are imposed. These are left for specialisations of the general no-
tion. The notion is not trivial however. For instance, it uniquely determines
a depth function which to each individual assigns the number of matings be-
tween it and its most distant ancestor(s) in the pedigree. For a given pedigree
y = 〈J, P,G,marr, offs, pheno, geno〉 we define depthy to be a function into
the natural numbers, IN (zero included):

depthy : J → IN

satisfying the following two requirements:

AD1 for all i ε J , if i has no ancestors j, k in J such that
i ε offs(j, k) then depthy = 0

AD2 for all i ε J , if i has ancestors j, k in J such that
i ε offs(j, k) then depthy(i) = max{depthy(j), depthy(k)}+ 1

It is easy to see that depthy is well defined, and uniquely determined in y. For
if iεJ has ancestors j, k in J then by AP8 〈i, j〉 is uniquely determined. We may
therefore proceed by induction and transfer uniqueness of 〈j, k〉 to uniqueness
of depthy(j) and depthy(k), and thus to depthy(i). As J is required to be finite
there is a maximal number k0 such that all numbers depthy(i) are smaller than
or equal to k0. We will refer to k0 by max(depthy).

Pedigrees are definitely to be interpreted at the individual level. If members
of J were taken to be populations rather than individuals AP8 could not be
maintained, for at the level of populations difference in parental populations
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might come up in a trivial way, for example by one population being a proper
subset of another one. A population genetic version of AP8 would have to as-
sume that the respective parental populations are disjoined, a strong assumption
which applies only under very good experimental conditions. In the following,
interpretation of members of J as populations is ruled out anyway.

The notion of a pedigree gets more substance when reference to our original
models is added. We may consider models of genetics as being contained in a
pedigree. This amounts to the model’s individuals, phenotypes and genotypes
being included in those of the pedigree, and to the model’s functions MATOR,
APPEARANCE, DISTRIBUTOR, DETERMINER and COMBINATOR coin-
ciding with those of the pedigree as far as possible. A precise definition is this.
Let

x = 〈I,P,G,MAT,APP,DET,DIST,COMB〉

be a model of genetics in the format described at the end of Chap.2 and let

y = 〈J, P,G,marr, offs, pheno, geno〉

be a pedigree. We say that x is contained in y (or that y contains x) iff the
following requirements are satisfied.

AC1 I ⊆ J,P ⊆ P,G ⊆ G

AC2 marr, restricted to I, is identical with the domain of MAT

AC3 offs, restricted to I, is identical with MAT

AC4 pheno, restricted to I, is identical with APP

AC5 for all i ε J , if there is γ ε G such that DET(γ) = APP(i)
then geno is defined for i, geno(i) ε G, and DET(geno(i)) = APP(i)

AC6 for all i, j ε I, if pheno(i) = pheno(j) then geno(i) = geno(j)

By AC3 and 4 the functions offs and pheno, when restricted to the individuals
in the model of genetics yield MATOR and APPEARANCE of that model. In
case of geno a similar requirement cannot be formulated for geno is of a different
type from DETERMINER. While DETERMINER operates in the direction
from genotypes to phenotypes, geno is defined to operate from individuals to
genotypes. Roughly, AC5 says that geno, when restricted to the model of
genetics, produces genotypes compatible with the connections drawn in that
model. geno(i) is a genotype which belongs to phenotype APP(i) in the sense
of geno(i) and APP(i) being related by DETERMINER. AC6 further narrows
down geno’s range of variability in the model of genetics. If DET is known to
be one-one, this requirement is implied by AC5.

The model x contained in a pedigree y gives genetic content to the latter.
Roughly, the model covers one or more processes of mating plus the production
of offspring, and the information captured by the model is transferred to the
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pedigree. If all the matings of the pedigree are covered in this way we say that
the pedigree has been put on a proper genetic basis. We state this as a formal
definition. If y = 〈J, P,G,marr, offs, pheno, geno〉 is a pedigree then y has a
genetic basis iff for all i, j, i1, ..., inεJ such that offs(i, j) = {i1, ..., in} there
exists a model of genetics x = 〈I,P,G,MAT,APP,DET,DIST,COMB〉
such that x is contained in y.

In a pedigree with genetic basis all matings are captured in detail by genetic
models. In particular, the transition of genotypes in each case is governed by
some COMBINATOR in the ‘contained’ model of genetics. We may sit back
here for a moment and think about the roles of pheno and geno in pedigrees
with genetic basis. At a first glance it seems that pheno and geno just duplicate
what is already present in the form of APP and DET. In fact, this is so
in each single model of genetics contained in the pedigree. The positive role
of pheno and geno comes to bear only if we look at different genetic models
contained in the same pedigree. Consider, for example, two such models with
parents 〈i, j〉 and 〈j, k〉, respectively. It may happen that individual j which thus
occurs in both models gets assigned different genotypes in the two models. If x1

= 〈I1,P1,G1,MAT1,APP1,DET1,DIST1,COMB1〉 and x2 = 〈I2,P2,G2,
MAT2,APP2,DET2,DIST2,COMB2〉 are the models in question this means
that j ε I1 ∩ I2, but there are genotypes γ1 ε G1 and γ2 ε G2 such that γ1 =
γ2,DET1(γ1) = APP1(j) and DET2(γ2) = APP2(j). A similar situation may
occur even at the level of phenotypes. It might be the case that APP1(j) =
APP2(j) for instance because in x1 other expressions are studied than in x2.
Such situations are ruled out by the connections to pheno and geno stated in
AC4 and AC5. For, by AC4, APP1(j) = pheno(j) = APP2(j). This, by AC5,
implies DET1(geno(j)) = APP1(j) = APP2(j) = DET2(geno(j)). So APP
and DET in both models produce the same values for j. Stated differently,
pheno and geno serve to make the different models of genetics contained in a
pedigree consistent. If we had chosen to put together several models of genetics
in a consistent way in order to obtain a concept similar to that of a pedigree,
pheno’s and geno’s role would be played by constraints on those models.

Consider the following example of the technique of pedigrees, which involves
segregation for a single character difference.57 It concerns albinism which, in
humans is due to a recessive gene. In the homozygote this causes a very light
skin, white hair and pink/red eyes. Using C to stand for the gene for normal
pigmentation and c to stand for albinism, we have:

DET(C,C) = DET(C, c) = DET(c, C) = normal
DET(c, c) = albino.

An example of a pedigree for this trait is shown in Figure 6-4.

57See (Strickberger, 1985), p.103.
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Fig.6-4
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In this, shading represents the presence of albinism. Circles are females, squares
are males and diamonds are of undetermined sex. Parents are connected by mar-
riage links, consanguinous marriages by double lines. Offspring are connected
by sibship lines. Offspring are listed in order of birth, through successive gen-
erations, I, II, III and so on. The individuals within a generation are numbered
1,2,3 etc. If sibs are not individually listed, as at II8 to II10, the number of
individuals is placed within the symbol. If two lines are conjoined as at II6
and II7, the individuals are identical twins, that is they arise from the split-
ting of a single fertilised zygote. They may not, however, necessarily have the
same GENOTYPE and may have the same GENOTYPE but differing PHENO-
TYPE, owing to penetrance. Progeny connected separately to the same sibship
line are fraternal.

Many traits can be traced in this way, and such diagrams may lead to an
understanding of the genetic basis, even when no experiments may be performed,
say, for ethical reasons in the case of humans. For example, the human disease
microcephaly in which the affected homozygote has a small head and is mentally
retarded (see Figure 6-5, after McKusick58).
Fig.6-5
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58(McKusik, 1969).
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It is found that the only individuals exhibiting the trait are from consanguinous
marriages. This would support the presence of a recessive gene for the disease.
In practice, arriving at such a diagram requires sampling of a larger popula-
tion. If only ‘interesting’ pedigrees are analysed, there may be a bias for or
against a particular mode of inheritance. On the other hand, including all in-
dividuals is uneconomic, and some reference to previous sampling would seem
better. Cannings and Thompson have discussed this central problem in pedigree
formation.59

In a pedigree we may define generations by reference to the depth function.
If y = 〈J, P,G,marr, offs, pheno, geno〉 is a pedigree then U is a generation in
y iff there is some number k such that

U = {i ε J/depthy(i) = k} , provided this set is not empty.

In other words, a generation in y consists of all individuals of the same depth.
We write Ik for the generation of depth k. By itself, this definition is not very
satisfactory. If the pedigree has loops of the form

Fig.6-6
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(with black circles for marriage and white circles for individuals, as above) then
the two individuals i, i’ on top have the same depth, say k, and the individual
j at the bottom has depth k+ 2. However, in terms of generations the problem
is that j is offspring of i’s on the one hand, and so belongs to the generation
following i. On the other hand, the definition of depth will follow the right-
hand branch which leads to depthy(j) = k + 2, i.e. j is in Ik+2. In general
kinds of pedigrees, containing loops of the kind indicated, for instance, there is
no satisfactory definition of generations. If we want this notion to satisfy our
intuitions there is no other resolution than to rule out configurations of the kind
just considered. If this is done, the pedigree becomes neatly stratified in terms
of the depth function, and all offspring of parents at one level (depth) belongs
to the following level. Formally, let us define a pedigree to be regular iff for all
numbers k, Ik+1 is the set of all offspring obtained from Ik. More precisely, for
all i ε J :

59(Cannings & Thompson, 1977).
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i ε Ik+1 iff there exist j, l ε Ik such that i ε offs(j, l).

The graph of a regular pedigree looks like this:

Fig.6-7
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Each individual belongs to exactly one generation, indicated by the horizontal
line. Between any two generations, there are the instances of matings.

Some implications of these definitions may be noted. Firstly, the generations
Ik form a partition of the set J of individuals in the pedigree. By definition, each
Ik is non-empty, and each i ε J belongs to some Ik. Moreover, Ik is disjoined
from Ir if k 6= r, for depth is a function, as shown above. Secondly, we note that
for all k ≤ max(depthy), Ik 6= ∅. Thirdly, in a regular pedigree for each i ε Ik
with k 6= 0 there exist two unique parents r, s ε Ik−1 such that i ε offs(r, s).

In a regular pedigree y we may consider the sequence I0, I1, ... of generations
from the point of view of population genetics, that is, as a sequence of matings
of different populations. To this end we have to partition each generation into
populations according to the phenotypes realised. In each generation Ik we
consider the subsets

Ωπ,i = {i ε Ik/pheno(i) = π}

For each phenotype πεP such a subset is called a homogenous population (in
generation k).

The theoretically interesting point about pedigrees is that they capture
longer sequences of genetic transitions. This allows for more homogenous and
subtle technical treatment at the level of phenotypes as well as of genotypes. The
transitions from one to the next generation in a pedigree with genetic basis are
captured by single COMBINATORS or DISTRIBUTORS which need not have
much theoretical connection; there is no theoretical ‘thread’ running through the
sequence of generations. A more adequate conceptualisation requires concepts
covering all of the generations at once. Such concepts are available in the form
of stochastic processes. As stated above, a stochastic process is given by a se-
quence of probability measures pk, k = 0, 1, 2,... (all defined over some common
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σ-algebra). In applying this notion to the genetic frame developed we may use a
simplified version in which the structure of the σ-algebra does not play any role.
Considering a mere set instead we may simply work with Γ-distributions over
some set X as defined in Chap.2. By adding such a stochastic process at the
level of phenotypes, the notion of a regular pedigree is substantially enriched.

We define a stochastic pedigree z to consist of a regular pedigree y together
with a stochastic process p, i.e.

z = 〈y,p〉, where

1) y is a regular pedigree, y = 〈J, P,G,marr, offs, pheno, geno〉

2) p : {0, 1, 2, ...,max(depthy)} × P → [0, 1] is such that for all
kε{0, 1, 2, ...,max(depthy)},pk : P → [0, 1] is a Γ-distribution over P

Here pk is of course defined by pk(π) = p(π, k). The stochastic process p may
be regarded from two points of view. On the one hand, it may be regarded to
comprise the information present in pheno. In order to make this more clear
let us assume that pheno were defined for all i ε J . Then in each generation Ik
we simply could calculate the relative frequencies of all phenotypes occurring,
i.e. RF (π, Ik). Defining a Γ-distribution θ over P by θ(π) = RF (π/Ik) it seems
natural that θ should be identical with pk. So if pheno were fully defined we
might define p in terms of the relative frequencies given by pheno. However,
pheno is not usually defined for all individuals in a pedigree. Usually, some
information is simply missing. Then pheno cannot serve as a basis in order to
define the stochastic process p, and p acquires a more hypothetical status. Seen
from this more theoretical point of view, p is a new, independent theoretical
concept which is used in order to systematise incomplete knowledge about pheno
and the development of distributions of phenotypes over time. There is no
need to choose one or the other point of view here. Both are adequate in
certain contexts. If we want to apply methods working already on the basis of
incomplete knowledge, like processes of peeling used in pedigree analysis,60 we
may well adopt the first point of view and regard pk as ‘observed distribution’.
If, on the other hand, we want to study general laws governing the transition of
pheno-distributions from one generation to the next, it may be better to look
at the distributions as somewhat idealized, theoretical objects which need not
completely fit with observed frequencies.

Similar observations hold at the level of genotypes. We may define a pedigree
with genetic basis z as a structure

z = 〈y,p∗〉

where y = 〈J, P,G,marr, offs, pheno, geno〉 is a regular pedigree and

p∗ : {0, 1, 2, ...,max(depthy)} ×G→ [0, 1]

60(Cannings et al., 1978).
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a stochastic process as in the previous definition. Since much less usually is
known about geno in observational terms than about pheno, it seems appropri-
ate to treat p∗ as a theoretical construct from the outset. Though p∗ could be
defined in terms of geno if geno were defined for all i ε J , this possibility is very
unrealistic. Even in a pedigree with genetic basis where each mating is governed
by a model of genetics yielding hypothetical genotypes and a COMBINATOR,
the assignment of genotypes to individuals is not uniquely determined, and the
function values of geno contain some features of arbitrariness. So it seems more
adequate to regard p∗ as a means to be used for easier theoretical investigation
of the stochastic features at the level of genotypes.

In the two previous definitions no requirements were made connecting the
stochastic processes p and p∗ with their respective counterparts pheno and
geno. This was on purpose because such connections cannot be drawn straight-
forwardly. If pheno and geno are undefined for some i ε Ik the relative frequen-
cies RF (π/Ik) and RF (γ/Ik) will usually deviate from the values of the ‘true’
Γ-distributions pk and p∗k, if we think of the latter as defined in the hypothetical
case where pheno and geno are defined for all individuals. In order to achieve
some conceptually clear description of these connections let us introduce the
observational distributions opk in each generation Ik of a regular pedigree. opk
is defined by the observed relative frequencies at the level of phenotypes, i.e.

opk(π) = RF (π/Ik) for all π ε P .

In the same way, at the genotypic level we may define

op∗k(γ) = RF (γ/Ik) for all k ≤ max(depthy) and γ ε G.

The connection between these observational distributions and the stochastic
processes introduced before has to be expressed by some approximation. The
most natural approximation is given by reference to some ε > 0, setting

| opk(π)− pk(π)| < ε, for all π ε P

and similarly for op∗k. If such an approximation holds for suitably small ε the
stochastic processes pk and p∗k may be called useful.

Summarising this discussion we may introduce the notion of an applied pedi-
gree z with ε fit to consist of a regular pedigree y together with stochastic
processes p, p∗

z = 〈y,p,p∗〉

such that

1) 〈y,p〉 is a stochastic pedigree

2) 〈y,p∗〉 is a pedigree with genetic basis

3) for all k ≤ max(depthy) and all π ε P , γ ε G:
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| opk(π)− pk(π)| < ε and | op∗k(γ)− p∗k(γ)| < ε.

The choice of ε has to depend on the amount of information lacking about
pheno and geno relative to the total set of individuals considered, but also on
the observed relative frequencies. If the relative frequencies in a generation
are all of the same order, ε may be chosen with respect to that number. If
relative frequencies greatly vary, one has to concentrate on relative frequencies
for phenotypes or genotypes occupied by few individuals for these will change
considerably if lacking values of pheno or geno turn out to contribute to the
latter. In such cases an ε leading to fit will typically be greater than in the first
case.

Comparison of the frequencies of pheno- and genotypes in the transition from
parents to progeny as given by the stochastic processes p, p∗ on the one hand,
and by the COMBINATORS of the genetic models describing these transitions
in a pedigree with genetic basis on the other hand is more involved. Let us look
at the level of genotypes first.

In a regular pedigree with genetic hypothesis and genetic basis the transition
of genotypes from generation Ik to Ik+1 may be described as follows. Let γ, γ’ be
the genotypes of two parents in generation Ik and γ∗ the genotype of one of their
offspring in the following generation Ik+1. Since the model has a genetic basis,
the mating process is described by a model of genetics with COMBINATOR,
i.e.

COMBINATOR(γ, γ’) =
∑
αiγi

and γ∗ is, say, γr. Now in Ik the probabilities of γ and γ’ occurring are given
by p∗k(γ) and p∗k(γ’). On the assumption that mating in Ik occurs with equal
probability among any pair of individuals the probability of matings with par-
ents of genotypes γ and γ’ in Ik is p∗k(γ) · p∗k(γ’). On the other hand, the
probability of creating offspring of genotype γr in each such mating is αr, so
the total probability of γr occurring in Ik+1,p∗k+1(γr), is αr ·p∗k(γ) ·p∗k(γ’). By
regarding COMBINATOR(γ, γ’) as a Γ-distribution over G, αr may be written
as COMBINATOR(γ, γ’)(γr). So we arrive at the following equation (with γ∗

instead of γr):

(6.7) for all k < max(depthy) and all γ, γ’, γ∗ ε G:
p∗k+1(γ∗) = p∗k(γ) · p∗k(γ’)·COMBINATOR(γ, γ’)(γ∗).

This is a general statement governing the stochastic process p∗ in all cases
where the probability of mating is equally distributed within each generation.
For different kinds of distributions of mating probabilities, different versions of
(6.7) may be derived in an analogous way.

We note that the connection expressed in (6.7) is entirely concerned with
idealised, theoretical functions. If we switch from p∗ to relative frequencies in
terms of geno, an approximative version of (6.7) may be obtained connecting
relative frequencies in the pedigree as expressed by op∗ with the theoretical
values of COMBINATOR in the underlying model of genetics.
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At the level of phenotypes we may consider an analogous connection between
the value of DISTRIBUTOR, DISTRIBUTOR(π, π′), for two parental pheno-
types in generation Ik, and the value of pk+1 as given in the pedigree. Repeating
the derivation which led to (6.7) we obtain a similar formula for phenotypes in
the case of equal probabilities of mating in each generation.

(6.8) for all k < max(depthy) and all π, π′, π∗ ε P :
pk+1(π∗) = pk(π) · pk(π′)·DISTRIBUTOR(π, π′)(π∗).

Replacing the pk’s by observed numbers, opk, (6.8) may be transformed into a
statement connecting observed relative frequencies as occurring in the pedigree
and in the underlying models of genetics.

Finally, let us consider the additional features arising in the relation of mod-
els of genetics being contained in a pedigree when the genetic individuals in the
‘contained’ model are populations. Since the interpretation of a pedigree is in
terms of proper individuals we have to introduce some connection between pop-
ulations in the underlying model and individuals in the pedigree. The natural
connection is of course to take populations Ωπ,k as defined above to be identical
with homogenous populations occurring in the ‘contained’ genetic model. As
before, the genetic model may cover less generations or matings than present
in the pedigree. For reasons of simplicity let us consider just one transition
between two succeeding generations in the pedigree. A natural modification
of the requirements stated above in the definition of ‘contained in’ then is the
following.

Let x = 〈I,P,G,MAT,APP,DET,DIST,COMB〉 be a model of population
genetics and y = 〈J, P,G,marr, offs, pheno, geno〉 be a regular pedigree.

x is contained in y iff

1) there is some k < max(depthy) such that each genetic individual
i ε I is a homogenous population Ωπ,k

2) P ⊆ P and G ⊆ G

3) for all i, j, i1, ..., in ε I: if MAT(i, j) = {i1, ..., in} then
offs(i, j) = ∪j≤nij

4) for all i ε I and all j ε i: if pheno is defined for j then
APP(i) = pheno(j)

5) for all i ε I, if there is some γ ε G such that DET(γ) = APP(i)
then for all j ε i:
geno is defined for j and geno(j) ε G and DET(geno(j)) = APP(i)

6) for all i ε I and all j, k ε i: if geno is defined for j and k
then geno(j) = gen(k).

Requirements 2-6 are essentially taken over from AC1 and AC3 to AC6, with
adjustments to the population case. The definition of a pedigree with genetic
basis can be taken over, we only have to change the label into ‘pedigree with
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population genetic basis’.
The relation of population models to stochastic models is much the same as

in the individual case. Consider a stochastic pedigree y = 〈J, P,G,marr, offs,
pheno, geno〉, a model of population genetics x = 〈I,P,G,MAT,APP,DET,
DIST,COMB〉 contained in y, as well as parental phenotypes π, π′ in gener-
ation Ik, and a phenotype π∗ in generation Ik+1. Let Ωπ,k,Ωπ′,k and Ωπ∗,k be
the corresponding homogenous populations and suppose the parental popula-
tions occur in x. Then DISTRIBUTOR in x assigns a Γ-distribution to the two
parental phenotypes π, π′ :DISTRIBUTOR(π, π′) =

∑
αiπi. By definition of

the models of population genetics each αi here is the relative frequency of off-
spring with phenotype πi (in population Ωπi,k+1) in the total offspring Ωπ,k and
Ωπ′,k. As before, we may consider the probability for offspring of phenotype πi
from parents of phenotypes π and π′ : pk(π) ·pk(π′) ·αi. In terms of populations
these numbers also make sense. pk(π) is the relative size of population Ωπ,k in
Ik, and so is pk(π′) with respect to Ωπ′,k. The relative frequency of individ-
uals with phenotype πi in the offspring, pk+1(πi), then, is given as before by
pk(π) · pk(π′) · αi, that is

pk+1(πi) = pk(π) · pk(π′)· DISTRIBUTOR(π, π′)(πi).

As before, this equation holds only on the assumption that probabilities are
equally distributed. A similar derivation at the level of genotypes yields the same
formula with γ’s instead of π’s, and COMBINATOR instead of DISTRIBUTOR.
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Chapter 7

Diversity

Our approach stresses the unity of different genetic models. In fact, it not only
stresses it, but proves it, in a sense. For all the models of the different branches:
transmission-, Mendelian-, linkage-, and molecular genetics are obtained by re-
finement or specialisation of the basic model introduced in Chap.2. In a strict
sense, therefore, all the different branches’ models are structurally identical at
the basic coarse level where phenotypes and genotypes are not yet looked at
in detail. This was one of the necessary conditions put forward for unity in a
scientific field in Chap.1

This observation seems rather surprising, given the many discussions about
whether molecular genetics can fully replace transmission genetics, and whether
the latter can be reduced to the former.61 In fact, if the relation were so obvi-
ous one would wonder how such a discussion is possible. It has to be admitted
that even at the coarse level at which phenotypes and genotypes are not fur-
ther specified, a claim of structural identity of different models has not been
strongly defended, neither among geneticists nor among methodologists. Why?
There is a simple explanation: because such a claim presupposes sufficient con-
ceptual ‘carving’ to produce models which can be structurally compared, and
because there were no attempts to construct precise overall models for genetic
theories up to now.62 On the informal level of textbook presentations a claim of
structural identity hardly arises because at this level no systematic distinction
is made between central assumptions and concepts characteristic for all kinds
of applications, and other specific assumptions and concepts used only in par-
ticular applications. There are no easily identifiable classes of assumptions one
might compare. In order to arrive at a stage where comparison is easy the task
of clustering together the various concepts and assumptions in the right way
has to be performed first. Anybody who tries to figure out which assumptions
are central for one branch of genetics, and which are not, will agree that this is
by no means a trivial procedure.

When a discipline reaches a stage of sufficient maturity, as is now the case
for genetics, there is some inherent drive to deal with foundational issues. If
things get so specialised that scientists in different subdisciplines have difficul-

61This discussion is mainly entertained among philosophers of biology, to be sure. We
mention the exchange of papers between Hull and Schaffner concerning this point: (Hull,
1969,1972), (Schaffner, 1967,1969a,1969b).

62We do not think that (Woodger, 1959) and (Kyburg, 1968) prove the contrary. In addition
to using the somewhat clumsy syntax of first-order predicate calculus their accounts deal with
one special model only, namely the Mendelian model.
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ties understanding each other’s articles there is some need for unification, that
is, clarification, simplification, and comparison. Concepts and assumptions that
were introduced in the first phase of struggle with the yet unknown phenom-
ena get conceptually clarified by subsequent careful study of their relations
to existing models. This automatically leads to various forms of comparison,
and sometimes simplification follows. We think that such issues will become
increasingly important in genetics though it is admitted that at the moment
the development is still so fast that most activity is attracted by immediate,
practically relevant research.

The kind of structural identity considered holds only at the coarse level of the
basic model, as mentioned. It is lost once we go into the detailed specification
of phenotypes and genotypes. There is enough room for diversity under the
frame given by the general models. In considering this diversity in more detail,
questions about comparison naturally come up. Let us begin by restating in
detail the points in which any two of our models differ, and by attempting
to achieve clarity about how any two models can be compared, and are inter-
related.

For reasons of comparison some general terminology concerning the compo-
nents of the models is useful. We distinguish between the objects occurring in a
model on the one hand, and the functions and relations occurring in it on the
other hand. By objects we mean genetic individuals (the entities denoted by
PARENT and PROGENY), the PHENOTYPES, the GENOTYPES (of parents
and progeny), the EXPRESSIONS and the FACTORS. All other items occur-
ring in the models are functions: MATOR, APPEARANCE, DISTRIBUTOR,
DETERMINER and COMBINATOR, the genetic map f in linkage models, the
component functions DET 1,..., DET k. A third kind of entities not covered by
this distinction are numbers. These we regard as objects, but of an auxiliary
kind.

We begin with the easy cases, considering first the relation between the gen-
eral models of Chap.2 and the models of transmission genetics. Each model
of transmission genetics by definition is also a general model. So the kinds of
objects and the functions of the general models all reappear in the transmission
models. But they are not simply taken over, they get endowed with additional
inner structure. Let us go through the list of components of the general model:
PARENTS, PROGENY, PHENOTYPES, GENOTYPES, MATOR, DISTRIB-
UTOR, APPEARANCE, DETERMINER, COMBINATOR. Whereas PAR-
ENTS and PROGENY in the general models are treated as unspecific basic ob-
jects, they are required to be non-empty sets of individuals in the transmission
models. The PHENOTYPES in the general models are regarded as primitive
objects which are not further analysed. In the transmission models the PHE-
NOTYPES are also present, but now they are no longer primitive entities, they
acquire some internal structure, being defined as k-tuples of EXPRESSIONS.
The same happens with GENOTYPES. They change their status of unanalysed,
basic objects into that of sequences of k pairs of FACTORS. Thus all three kinds
of objects in the general models get refined in the same way: the objects are not
eliminated, they are taken over, but they change their status from unanalysed,
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‘last’ elements to more complex, defined structures. In order to achieve the
required definition it is of course necessary to introduce other, ‘final’ building
blocks in terms of which the previous ones, PARENT, PROGENY, PHENO-
TYPES, and GENOTYPES, may be defined. In fact, new ‘atomic’ objects are
introduced in the transmission models: EXPRESSION, FACTORS, and INDI-
VIDUALS. We did not explicitly introduce a set of individuals such that each
population is a subset of it, but only for reasons of economy. A set of individuals
which form the populations may be easily introduced, however.63

So the transmission models contain more kinds of objects: EXPRESSIONS,
FACTORS, and INDIVIDUALS are new. If we are keen on conceptual sparsity
we could eliminate some of the ‘old’ kinds of objects, and treat them as explicitly
defined in terms of the new ones. This might be done for GENOTYPES and
PHENOTYPES, it does not work for POPULATIONS. We do not make use of
this possibility.

The addition and refinement of objects induces corresponding refinements of
the functions. MATOR, which originally mapped pairs of objects (PARENTS)
into sets of objects (set of PROGENY) now maps pairs of sets of objects (sets of
INDIVIDUALS, parental populations) into sets of such sets (sets of populations
of progeny). Similar observations hold for DISTRIBUTOR and COMBINA-
TOR.

Such addition of new objects and subsequent refinement of ‘old’ objects and
functions constitutes one step in the transition from general- to transmission
models which may be subsumed under the label conceptual extension. The
term ‘extension’ is used because all syntactic stipulations about the ‘old’ con-
cepts also hold in the ‘new’ models. A second step now consists in the addition
of further assumptions which, in a certain sense, operate in narrowing down the
additional possibilities obtained by the conceptual extension. Three additional
assumptions were introduced in Chap.4: that DETERMINER be decomposable,
that the coefficients of the distributions of phenotypes are defined as relative
frequencies, and that the factors assigned to offspring are all among the factors
assigned to their parents. All three assumptions place considerable restrictions
on the terms involved, the first on DETERMINER, the second on DISTRIB-
UTOR, and the third on COMBINATOR. Though we hesitate to call the first
two assumptions genetic laws, it seems admissible to lump together the effect
of narrowing down the extensions of the terms exerted by all three assumptions
under the label specialisation of laws. For this is their overall effect when seen
from the point of view of the general models. The laws of the general models
(the axiom of fit), get specialized by means of the three additional assumptions
on DETERMINER, DISTRIBUTOR and COMBINATOR.

The result of this formal comparison may then be stated as follows. The
models of transmission genetics are obtained from the general models by con-
ceptual extension plus specialisation of laws. We suggest the term refinement for
intertheoretical relations of this form. In abstract terms, a refinement consists
in the addition of further kinds of objects and perhaps also of further functions

63See our treatment in (Balzer & Dawe, 1986a,b).
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such that the ‘old’ objects can be defined as complex structures of ‘new’ objects,
and in the introduction of further law-like assumptions concerning the ‘old’ and
‘new’ items in addition to the ‘old’ laws’ holding also in the ‘new’ models. It is
not difficult to see, and could be proved in a more precise setting, that refine-
ment is transitive: if a class of models M2 is a refinement of the models in M1,
and M3 a refinement of M2, then M3 is a refinement of M1.

Let us next consider the relation between Mendelian- and transmission ge-
netics. As defined in Chap.4, each Mendelian model is a transmission model. In
addition, Mendelian models are conceptual extensions, for they contain the new
sets of CHARACTERS and they contain specialisations of laws. The first special
law is about DETERMINER and formulates the distinction between dominant
and recessive factors,the second special law is the definition of COMBINATOR
as yielding all possible combinations of factors with equal coefficients. So here
we also have a relation of refinement. Mendelian models are a refinement of
transmission models. From the transitivity of the refinement relation it follows,
that Mendelian models also are a refinement of the general models.

The same relation obtains between linkage models and transmission models.
By definition, each linkage model is a model of transmission genetics to which
a genetic map f is added. So we have a case of conceptual extension, a case in
which the objects on both sides are strictly identical, and only a new function is
added. There is also a specialisation of laws given by the axioms for the genetic
map. So linkage models are a refinement of transmission models.

The comparison of linkage and Mendelian models in terms of the above for-
mal notion of refinement, on the other hand, yields a negative result. Mendelian
models contain objects new with respect to linkage models, namely CHARAC-
TERS, and vice versa, linkage models contain the genetic map which is new
with respect to Mendelian models. So no side is a conceptual extension of the
other. The same holds for laws. Linkage models are not required to satisfy the
Mendelian form of COMBINATOR, and a Mendelian COMBINATOR will in
general not satisfy the recombination axioms which impose features of linkage
on COMBINATOR. So the two classes of models are independent of each other
in the sense that no one is a refinement of the other. This is not to say that
formal relations could not be produced, outside of our present reconstruction.
For example, Mendelian genetics might be seen as a limiting case of linkage
genetics when the genetic map distances are infinite (scientific practise does not
appear to operate in this way, however). What we say here is strictly in respect
of the models of genetics which have been produced in this book.

We may depict the result of these comparisons by drawing a little graph, the
knots of which represent classes of models and the threads of which denote the
relation of refinement (from above below):
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This graph may be considerably enlarged by adding further special assump-
tions to those characterising the models introduced. For example, by adding
the assumption about dominant and recessive factors to linkage models, we ob-
tain a refinement of linkage models labelled ‘quasi-Mendelian linkage models’
in Fig.7-1. By adding characters to the models of transmission genetics we
obtain a refinement of the transmission models, called ‘Transmission genetics
with characters’ in Fig.7-1. By assuming that all assumptions of linkage and
of Mendelian models are satisfied we would obtain another class of models, M∗

in Fig.7-1 which, however, is of little scientific interest. Note that Mendelian
models are also a refinement of those of transmission genetics with characters.
That is, the lines in the graph may also form ‘upward forks’. The occurrence
of upward forks is compatible with our intuitive understanding of ‘refinement’:
a class of models may be obtained from two different classes of models by re-
finement, i.e. refining two different classes in different ways may yield the same
result.

A second dimension of comparison is given by the constraints. The constraint
for the general models required that populations with the same phenotypes get
assigned the same genotypes in all models in which they occur. This constraint
also holds for the models in transmission genetics, as well as for Mendelian,
and linkage models. In linkage genetics a further constraint was introduced,
requiring that the map-values of a gene be the same in a species, provided the
gene was assigned to populations with identical phenotypes (compare Chap.4).
The pattern here is much the same as at the level of models. New ‘objects’
(species) are introduced, and a more special contraint is added to the ‘old’
ones. Thus the label ‘refinement’ may be extended to cover also the level of
constraints, and Figure 7-1 above also represents the situation with respect to
this extension.64

These two dimensions of comparison are concerned with the formal parts of
the theories involved. However, empirical theories must not be seen as mere

64Strictly speaking, the lines now represent the conjunction of both kinds of requirements:
for models and constraints.
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formal entities. As pointed out in Chap.1 and Chap.2 there are at least two fur-
ther, non-formal features of major importance. First, there are the real systems
at whose explanation the theory aims, which we called intended systems. Their
determination ultimately has to involve pragmatics in the form of ostensions or
ad hoc decisions. Second, there is what we called the process of application of
the theory to its intended systems. For two theories to be compared with each
other these two features also have to be related in an appropriate way in order
to obtain a ‘real’, satisfactory intertheoretic relation.

With respect to the intended systems the situation for most of the pairs of
theories just considered is clear. In all cases where there is a relation of refine-
ment it is pretty clear that the intended systems of the refined theory are also
intended systems of the ‘coarser’ theory, but not necessarily vice versa. That
is, the intended systems of the refined theory form a subset of the set of in-
tended systems of the ‘coarser’ theory. Any intended system of transmission or
Mendelian or linkage genetics is also an intended system of our basic genetic
model, and every system intended for linkage and Mendelian genetics is also
intended for the general transmission model. More precisely, if the community
of linkage geneticists intends to apply their model of the genetic map to some
particular real system (say a population of Drosophila) then the same commu-
nity also intends to apply the general transmission model to that system. This
is a consequence of the refinement relation obtaining between the two models.
As the linkage model ‘contains’ the general transmission model any application
of a linkage model to a Drosophila population automatically amounts to an
application of the general transmission submodel to the same population. The
only pair of models not standing in the refinement relation was that of linkage
and Mendelian genetics. The lack of a nice inclusion between the models in
this case is accompanied by a corresponding lack of inclusion of the intended
systems. Though the sets of intended systems for both models have a large
array of overlap there are other intended systems of either model which are not
intended systems for the other model.

Similar observations hold for the whole process of application. If one theory
is a refinement of another one then any successful process of application of
the former comprises a successful process of application for the latter. Think
of some intended system of Mendelian genetics, for instance, and the process
of application of Mendelian theory to that system. According to Chap.2 this
amounts to finding out which of the Mendelian concepts are realised in the
system, determining as much data as possible which can be expressed in these
concepts, and finally to checking whether the data can be embedded in a full
Mendelian model. Consider as a first case a model of transmission genetics.
The concepts used in a model of transmission genetics are just the same as
used in the Mendelian model. So all the Mendelian concepts realised in the
system will also be concepts of transmission genetics, and the first step in the
process of application is the same for both models. This extends to the second
step. Every determination of data for the Mendelian model may be regarded
as a determination of the same data for the general transmission model, for
the data are expressed in the form of concepts which are the same for both
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models. The third step of checking whether the data obtained fit into a full
model is also unproblematic. If the data fit into a Mendelian model then a
forteriori they fit into a transmission model. This is due to the relation of
refinement obtaining between the two models. By its definition, the Mendelian
model satisfies all requirements stated for the transmission model. Now ‘fit’
amounts to an existential claim: ‘there is a model into which the data can be
incorporated’. So if there is a Mendelian model into which the data can be
incorporated there also will be a transmission model into which they fit. For
every Mendelian model by definition also is a transmission model. So each
successful application of the Mendelian model yields a corresponding successful
application of the transmission model.

The same reflections could be made for any other pair of models among which
a relation of refinement was stated. As a second case let us consider the relation
between Mendelian models and the basic genetic models described in Chap.2.
In this case the refined (Mendelian) model uses concepts additional to those
used in the basic model: EXPRESSION, FACTOR, SET OF FACTORS, and
the component determiners DET i. In principle therefore we might encounter
the following situation: the only concepts realised in the intended system under
study are those new ones typical for the Mendelian case, while none of the
concepts from the basic model is realised. Though a priori possible this case will
not occur because all the new Mendelian concepts more or less presuppose the
‘old’ concepts of the basic model as meaningful. The notion of an EXPRESSION
is used to refine (and redefine) that of a PHENOTYPE, so whenever in an
intended system we can realise EXPRESSIONS we also will realise some kind
or other of PHENOTYPE. The same holds for FACTOR and GENOTYPE, and
DET i and DETERMINER. The only ‘new’ concept which does not really rely
on ‘old’ concepts is that of a SET OF FACTORS according to which the factors
are clustered to form allelic sequences. Now this concept in the Mendelian
theory is the most theoretical one, and unlikely to be directly determined in
the form of data. So it will play a role in the process of application only in
the third step when collected data are fitted into a full model. In the present
case this means that each Mendelian model (in which SETS OF FACTORS are
used) also satisfies the requirements set forth for the basic genetic model (in
which the SETS OF FACTORS do not occur). This implication simply holds
by the definition of Mendelian models. To summarise, a successful process of
application of the Mendelian model will yield a similar successful process for
the basic genetic model. Among the Mendelian concepts realised in an intended
system there will be most of the observational concepts of the basic model, and
the collection of data will be the same for these when regarded from the point
of view of the two models. Finally, if there is a Mendelian model into which the
‘Mendelian data’ can be fitted then there will be a basic model into which the
subsets of basic observational data can be fitted.

Again, in the only non-comparable case that has occurred so far, that of
linkage and Mendelian models, also the processes of application do not stand in
a relation of inclusion with each other. There are applications of linkage genetics
which cannot be regarded as applications of Mendelian genetics, and vice versa.
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Not unexpectedly, the relations considered so far were unproblematic be-
cause we did not reach molecular genetics. We expect a different kind of rela-
tion to hold between molecular genetics and the other, ‘classical’ versions. The
folklore is that, since chromosomes as well as processes in the cell ultimately
consist in chemical reactions between macromolecules, molecular genetics yields
a model or picture adequate to deal with all genetic applications. Therefore, it
should be only a matter of time until all successful applications of the other mod-
els are reproduced by means of molecular models. This is a rather speculative
view, and nearly of the same quality as other, philosophical reduction claims,
like that of biology reducing to chemistry, chemistry to physics, or mathematics
to set-theory. The point about such claims is not that they are right or wrong:
they are of little practical import because they have no empirical content. They
represent promises rather than empirical statements. If they are interpreted as
empirical claims, they lack support.

If we try to compare molecular models with other models, which models
should we consider at the other side? On our account the models of mol-
ecular genetics by definition are (general) models of genetics as described in
Chap.2. So taking the latter as a counterpart for comparison will not yield
thrillingly new insights. The models of molecular genetics are refinements of
the general models. They are obtained from the latter in two steps. First, new
objects are introduced: QUANTA at the level of DNA and of amino sequences,
and the component functions DET i of DETERMINER. PHENOTYPES and
GENOTYPES are defined in terms of these new objects: they come out as
configurations of strands of QUANTA. So molecular models are a conceptual
extension of the general models. In a second step, the general laws are specialised
by assuming that DETERMINER and COMBINATOR take special forms as
required in AM4 and AM5. This means that we also have a specialisation of
laws, and therefore the molecular models are indeed a refinement of the general
ones.

The interesting questions of comparison turn up only when we consider trans-
mission genetics, or one of its refinements, on the ‘classical’ side. Let us first
concentrate on the general transmission models, and see how they compare with
the molecular models. As the claim of most interest is that of a reduction of the
former to the latter, let us first concentrate on the question whether transmission
genetics in some sense is reduceable to molecular genetics.

There are no commonly accepted criteria for reduceability,65 so we have
to choose one particular approach to guide our investigation. We prefer an
approach similar to the ‘structuralist’ account66 the basic ideas of which will
be sketched briefly. Before doing so, some terminological clarification seems in
place. We will speak of the reduced theory and the reducing theory in order to
refer to the two candidates to be compared. By this we do not want to imply
that the reduced theory in fact reduces to the reduced theory. Rather, the labels
are used even at a stage where just the possibility of reduction is investgated. In

65See (Nickles, 1973), (Schaffner, 1967), (Sklar, 1967), (Sneed, 1971), (Balzer, Moulines and
Sneed, 1987), Chap.6, and (Pearce, 1987), Chap.4 for a sample.

66(Sneed, 1971), (Balzer, Moulines and Sneed, 1987), Chap.6.
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the present case the reduced theory would be transmission genetics, the reducing
theory molecular genetics, but it is still open whether a relation of reduction,in
fact, exists between the two.

There are at least three dimensions in which the two theories, reduced and
reducing, have to be studied in order to see whether a relation of reduction really
exists between them. These dimensions we met already in the comparisons made
previously. First, there is the dimension of formal comparison of the models,
second, there is the dimension of comparing the intended systems, and third,
there is that of comparing the processes of applications on both sides.

Turning to the first dimension of formal comparison of the models, we have
to investigate whether such comparison is possible. If it is possible we will say
that there exists a relation of formal correspondence. The notion of a formal
correspondence comprises two parts. First, it consists of a translation of the
reduced theory’s concepts into concepts of the reducing theory, and second, of
a derivation of the translated axioms of the reduced theory from those of the
reducing theory. In Figure 7-2 this is depicted schematically.

Fig.7-2
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HHH
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In our case this amounts to translating the transmission genetic terms into
molecular terms, to restating the assumptions specific for the transmission mod-
els (AT1 to AT5) in molecular terms, and then deriving these translated assump-
tions from the axioms set forth for molecular models (AM1 to AM5).

In model theoretic terms this procedure roughly67 amounts to the following.
We start from a model of molecular genetics and try to define, or construct
from the ‘material’ present in this model, the sets of objects, and the functions,
a new model which is a model of transmission genetics. In abstract terms, we
start from a model of the reducing theory and try to construct a model of the
reduced theory out of it. This is schematically depicted in Figure 7-3.

67The connection between translatability and the model theoretic constructions to be used
is not entirely straightforward, and requires some technical assumptions which, however, are
of no interest here. A recent discussion is found in (Pearce, 1987).
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Fig.7-3
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The dotted arrows indicate that from the way of constructing x and from the
assumption that x∗ satisfies the axioms of the reducing theory, we may derive
that x, in fact satisfies the axioms of the reduced theory.

The process of construction is not committed to start from an arbitrary
model on the reducing side. Rather, we may choose the models we start with in
a way which is most appropriate. The only requirement to be satisfied in this
construction is that we be able to construct all models of the reduced theory
(transmission genetics) in this way. In other words, we must be able to find,
for every transmission model, some appropriate model of the molecular theory
out of which we can construct the former. This requirement captures the idea
that all models of the reduced theory must be reproduceable in some sense in
the reducing theory. Instead of construction we also might speak of definition
in this context, we prefer however the ‘construction’ terminology.

More precisely, such construction on the basis of a given molecular model
involves the following steps. First, we have to construct or define the sets
of objects for a transmission model, that is, the sets of genetic individuals,
of PHENOTYPES,EXPRESSIONS,GENOTYPES and SETS OF FACTORS.
Second, the same has to be done for the functions occurring in a transmission
model: MATOR, APPEARANCE, DETERMINER, DISTRIBUTOR, COM-
BINATOR, as well as the component functions DET i of DETERMINER. If
these steps succeed, then in a final step we have to show that the base sets and
functions thus constructed satisfy the axioms of transmission genetics provided
the initial model is in fact a model of molecular genetics (i.e. its sets of objects
and functions satisfy the axioms for molecular models).

The idea of actually constructing a model of the reduced theory in concrete
applications turns out as rather difficult to realise. For this reason we will be
satisfied with a weaker condition in which the model to be constructed is already
given to some extent. Instead of defining this model from the beginning, we start
with a structure of the type of such a model, and relate it to the given model of
molecular genetics in a way which hopefully on further elaboration would give
rise to a proper construction. On this account, we start with two structures:
one model of molecular genetics (which is denoted by x∗ in the following), and
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one structure of the type of a model of transmission genetics (denoted by x).
The model of molecular genetics need not be completely general, we may choose
it to satisfy further special requirements as long as these in general still allow
for a construction of every transmission model out of an appropriate molecular
model satisfying the special requirements. The task then is to establish or define
a relation of formal correspondence, denoted by µ in the following between the
two structures which has two properties. First, it allows us to show that if x∗

is a model of molecular genetics, and x is µ-related to x∗ it follows that x is a
model of transmission genetics. Second, the relation µ has to be such that it
can be interpreted as a recipe for actually constructing x out of x∗. Intuitively,
it will be helpful in the following to imagine both x∗ and x to be descriptions
of the same real genetic system, x∗ describes the system in molecular terms
whereas x describes it in transmission terms.

In order to establish such a formal correspondence µ the heuristic idea is
of course to relate the pheno- and genotypes of both models appropriately in
the first place. We will try to match the molecular GENOTYPES which are
configurations of strands with the transmission GENOTYPES which are tuples
of the form 〈〈a1, b1〉, ..., 〈ak, bk〉〉. Such a match will, however, remain unsatis-
factory as long as the ploidy explicitly present in the form of the transmission
GENOTYPE is not represented in the molecular GENOTYPE.

The immediate reaction to this observation might be to say that our ac-
count of molecular genetics is inadequate, for we did not incorporate ploidy in
the basic model. To this there are three replies. First, we may state that up
to now ploidy does hardly play any role in applications of molecular genetics.
Though molecular genetic applications in their majority stem from the two ar-
eas of haploid and diploid systems, this distinction itself is not relevant to the
process of application itself. Second, we may of course introduce the notion of
ploidy in molecular genetic models (see below). Third, and most importantly,
we know from other cases of reduction68 that reduction always involves one fur-
ther step not yet mentioned. Reduction practically never obtains between the
reduced theory and the full reducing theory. Rather, the normal case is that the
reducing theory has to be refined (in the technical sense discussed previously)
in order to achieve reduction. Thus the relation of formal correspondence does
not obtain between the two theories in their basic form, it obtains between the
reduced theory in its basic form on the one hand, and between a refinement of
the reducing theory on the other hand. In order to reduce collision mechanics to
Newtonian mechanics, for instance, we must not use the full range of Newtonian
models as the reducing theory. The class of models to be used is that of New-
tonian models which, in addition, satisfy the law of conservation of momentum.
Similarly, in order to reduce rigid body mechanics to mechanics in general, we
have to use models of mechanics at the reducing side which are more special in
that their particles do not move relative to each other (‘rigid’ systems). Along
these lines it seems most natural to choose a refinement of the molecular theory
in which the notion of ploidy is introduced, as a reducing counterpart for the

68See (Balzer, Moulines, Sneed, 1987), Chap.6.
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intended relation of formal correspondence.
To put it differently, the attempted formal correspondence will be estab-

lished in two steps. In step one the molecular theory is refined by introducing
the notion of ploidy. Only in step two then, can we try to establish a formal
correspondance between transmission models and this refined class of models.
Similar considerations are in place for the feature of proper populations to which
transmission genetics is restricted. As the molecular theory was held neutral in
this respect it is necessary to further specialise it to population genetics proper
in order to obtain a theory which might reduce transmission genetics.

We therefore introduce a refinement of molecular models in which ploidy is
present, and in which the models are restricted to populations proper. With
respect to ploidy we will restrict ourselves to the diploid case, as we did in
transmission genetics. Extension of our treatment to the haploid case, as well
as to ploidy greater than two, is easily achieved.

In material terms, the basis of diploidy is the presence of two chromosomes of
the same kind in each cell. So the introduction of ploidy in molecular models has
to identify pairs of strands as ‘belonging together’. In order to pair the ‘right’
chromosomes, it is necessary to characterise that two chromosomes, or strands
in a configuration of strands, are of the ‘same kind’. Instead of attempting a
definition of ‘same kind’ in terms of the chromosomes’ spatial form, we will take
a more general, and simpler route. We introduce new basic concepts R1, ..., Rs
each Ri denoting a set of strands of the same kind. In pairing, we may then
just require that any two paired strands belong to the same set Ri. In order to
simplify matters in the following, we will also introduce some order among the
(pairs of) strands occurring in a molecular genotype, that is, we will pass over
from a set N of strands to a tuple of pairs of strands 〈〈s1, s2〉, ..., 〈sr−1, sr〉〉 such
that s1, ..., sr are exactly the elements of N . Each pair in such a tuple represents
a pair consisting of two chromosomes of the same kind. This may be expressed
by requiring that si, si+1 are both in one of the sets Rj (for appropriate indices
i). A similar ordering is performed with the sets of strands occurring in the
PHENOTYPES.

All of these additional requirements are still not sufficient for the establish-
ment of a satisfactory formal correspondance. There is a further problem arising
in connection with the SETS OF FACTORS. In order to construct these sets
out of the molecular strands, some corresponding distinction has to be intro-
duced for the strands because in their present form we would not know which
‘part’ of a strand in fact ‘is’ a factor of a particular kind. Having put together
all the strands occurring in one molecular GENOTYPE we may introduce the
distinction of different appropriate ‘parts’ by means of a sequence of indices
denoting the different places where to ‘cut’ the whole strand in order to ob-
tain the different relevant parts. This will only work, however, if we make the
further assumption that the overall ‘length’ i.e. number of QUANTA, in the
concatenation of all the strands in a molecular GENOTYPE is the same for
all GENOTYPES in one model. This assumption we did not want to make
for molecular models in general (see Chap.5) but without it we see no way to
establish a ‘reasonable’ formal correspondence. Under this assumption the two
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overall strands obtained from the concatenations s1 ◦ s3 ◦ s5 ◦ ... ◦ sr−1 and
s2 ◦ s4 ◦ ... ◦ sr are ‘cut’ into an equal number of ‘parts’ by the indices τ1, ..., τk∗ ,
and any two such parts occurring in the same position in the two strands we call
opposed. Adding the assumption that the genetic individuals be proper popu-
lations, we may summarise these requirements, and obtain the definition of a
refinement of the models of molecular genetics, which we call models of diploid
molecular genetics.

A model of diploid molecular genetics is defined as a structure

〈I∗,P∗,G∗,MAT∗,APP∗,DET∗,DIST∗,COMB∗〉

for which there exist sets P, G, functions EX and COR, and numbers t0, k∗ and
τ1, ..., τk∗ such that

1) 〈I∗,P,G,MAT∗,APP∗,DET∗,DIST∗,COMB∗〉 together with EX
and COR is a model of molecular genetics (as described in Chap.5)

2) the number r of strands in the GENOTYPES of G is even, and for
s := r/2 there exist sets R1, ..., Rs such that each Ri (i ≤ s) is
a set of strands occurring in GENOTYPES of G, the Ri are pairwise
disjoint, and together exhaust the set of all strands occurring in
GENOTYPES of G.

3) G∗ is obtained from G by ordering the strands s1, ..., sr of each set
N in each GENOTYPE γ = 〈N , IR3, ψ〉 of G in the form
〈〈s1, s2〉, ..., 〈sr−1, sr〉〉 such that for each odd index j ≤ r,
sj and sj+1 are both in R(j+1/2)

4) the number of QUANTA occurring in the concatenations
s1 ◦ s3 ◦ s5 ◦ ... ◦ sr−1 and s2 ◦ s4 ◦ s6 ◦ ... ◦ sr is equal to t0

for all GENOYPTES of G, and τ1, ..., τk∗ are such that
4.1) 1 < τi < t0 for all i ≤ k∗
4.2) τ1 < τ2 < ... < τk∗

5) each PHENOTYPE in P contains exactly s strands of amino acids, and
P∗ is obtained from P by ordering the strands of each PHENOTYPE
π = {s1, ..., ss} into a sequence 〈s1, ..., ss〉

6) the number of QUANTA occurring in the concatenation s1 ◦ ... ◦ ss is
equal to t0 for all PHENOTYPES in P

7) DETERMINER∗ is such that the correlation function COR assigns a
transmission strand to each pair 〈si, si+1〉
occurring in the concatenated strand according to 3), and there is a
function EX∗, compatible with EX such that EX∗ maps pairs of
opposed parts into parts of the sequence of amino acids which forms
the value of DETERMINER∗ such that parts of the GENOTYPE
are mapped into parts of the PHENOTYPE with equal position
function values
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8) each element of I∗ is a non-empty set.

The indices in 3) can best be understood from Figure 7-4.

Fig.7-4

p p p ps1 s3 sr−1

srs4s2

s1, s2 ε R1, s3,s4 ε R2, sr−1, sr ε Rr/2

Note that the spatial ordering of the strands s1, s3, s5, ..., sr−1 one after the other
in this figure is artificial and does not depict any real feature. This ordering as
well as the corresponding concatenation to be used in the following is performed
purely conceptually. Note further that a similar definition for arbitrary ploidy
can be obtained by replacing the number s in 2) by r/p, and the pairs in 3) and
7) by p-tuples. The numbers t0, τ1, ..., τk∗ may be called a frame. In Figure 7-5
a concatenated sequence of strands as occurring in G∗ is depicted in the upper
row with an indication of the QUANTA of each strand. t0 is the overall number
of QUANTA occurring, and each number τi marks a position of cut indicated
by the vertical lines. These cuts divide the whole string into k∗ + 1 ‘parts’.
At the left, part of the second strand is depicted with two opposed parts being
indicated.
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Condition 7) adjusts DETERMINER to the diploid case, and also decomposes
it with respect to the parts into which the concatenated strands are cut by the
frame τ1, ..., τk∗ .

We now may establish a formal correspondence between models of transmis-
sion genetics and appropriate models of diploid molecular genetics. At the level
of GENOTYPES, for two given GENOTYPES on either side what we have to
do is to put the strands of the molecular GENOTYPE together so that they
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correspond in a natural way to the two ‘strands’ 〈a1, ..., ak〉, 〈b1, ..., bk〉 present
in the transmission genotype. To this end we concatenate the pairs of strands
occurring in the sequence 〈〈s1, s2〉, ..., 〈sr−1, sr〉〉 so that we obtain one big com-
prehensive pair of ‘superstrands’, each ‘superstrand’ of which is obtained from
r/2 of the original strands of the GENOTYPE by concatenation in the techni-
cal sense introduced in Chap.3. As stressed earlier, this concatenation has to
be imagined as a purely conceptual operation. The pair of superstrands thus
obtained now may be matched with the strands of the transmission model way
as depicted in Figure 7-6.

Fig.7-6
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The third vertical double arrow from the left indicates a case where QUAN-
TA from two STRANDS together form one transmission FACTOR. We have
not ruled this out, though it might easily be done. For the two GENOTYPES
to be in correspondence there has to exist a function g mapping the (pairs of)
parts defined by the frame t0, τ1, ..., τk∗ in the molecular GENOTYPE one-one
onto the (pairs of) factors occurring in the transmission GENOTYPE. As the
different parts occuring in the overall strand may be chemically identical we have
to add some further index in order to differentiate between such parts, identical
otherwise. Such an index is provided by the spatial positions as given by ψ in
the configuration of strands. So g, in fact, has to map pairs of parts and their
respective positions onto pairs of factors. Moreover, this mapping should respect
the order as depicted in Figure 7-5: parts on the same ‘superstrand’ should be
mapped into factors on the same ‘transmission strand’, and the ordering induced
among the parts by the ordering < of quanta should go over into the ordering
by indices of their images, for instance, for two parts p, p′ on the ‘upper’ strand:

if p < p′, g(p) = ai and g(p′) = aj then i < j.

The whole sets of GENOTYPES of two models x and x∗ correspond to each
other if there is a function h mapping each GENOTYPE from the molecular set
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one-one onto some GENOTYPE from the transmission set such that between the
two GENOTYPES there is a function g as just described. We note that this kind
of correspondence can be sharpened with a little extra effort to yield an effective
recipe for constructing the transmission GENOTYPE from the molecular one.

PHENOTYPES being defined as k-tuples of EXPRESSIONS on the one side
and as sequences of strands of amino acids on the other (in diploid models) can
be formally matched as follows. Given one phenotype at either side we simply
take all the strands of the molecular sequence and join them conceptually to
form one big ‘superstrand’ which may be cut into appropriate pieces by means
of the frame t0, τ1, ..., τk∗ just as was done for the GENOYTPES. The parts of
this overall strand may then be mapped one-one onto the EXPRESSIONS of the
PHENOTYPE from the transmission model in a way that preserves order. This
correspondence cannot be turned into a construction proper. In order to go from
the amino acids to the EXPRESSIONS in the transmission PHENOTYPE we
would have to go beyond the possibilities of definition and construction. The
real EXPRESSIONS are caused by the amino acids in a very complex way
which cannot be described in the vocabulary of the genetic models presented
here. This is why we have to resort to an abstract kind of match as described
above in which the transmission PHENOTYPE is not constructed but taken as
given, and its components are related to the quanta occurring in the molecular
phenotype in some suitable way. Note that the number k∗ has to be related to
the number k of EXPRESSIONS by k∗ + 1 = k.

Formally, the match between PHENOTYPES on both sides will be provided
by a function i mapping the molecular PHENOTYPES in models x∗ one-one
onto the transmission PHENOTYPES of the structure x such that, for each π∗

of the form 〈s1, ..., sk〉 there is a function j mapping the parts of s1 ◦ ... ◦ sk as
given by the frame t0, τ1, ..., τk∗ one-one onto the EXPRESSIONS of i(π∗).

The populations in the transmission model can be obtained from a molecular
model in which just these populations are taken as genetic individuals. As stated
previously, there is some freedom in the choice of the molecular models, which
is exploited now.

It is easy to see that these correspondences between the sets of objects
on either side yield natural correspondences of the functions, too. Let x =
〈I,P,G,MAT,APP,DET,DIST,COMB〉 and x∗ = 〈I∗,P∗,G∗,MAT∗,
APP∗,DET∗,DIST∗,COMB∗〉 be two structures such that x∗ is a model of
diploid molecular genetics, x is a structure of the type of the models of trans-
mission genetics, and let the base sets I,P,G and I∗,P∗,G∗ be related as just
described. In this case MATOR may be taken as identical with MATOR∗, and
APPEARANCE can be defined by

(9) APPEARANCE(u) = i(APPEARANCE∗(u))

for each population u in I = I∗. Similarly, DISTRIBUTOR, COMBINATOR
and DETERMINER on the transmission side may be defined by

(10) DISTRIBUTOR(i(π), i(π′)) =
∑
αii(πi)

COMBINATOR(h(γ), h(γ’)) =
∑
βih(γi), and
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DETERMINER(h(γ)) = i(DETERMINER∗(γ))

where DISTRIBUTOR∗(π, π′) =
∑
αiπi, COMBINATOR∗(γ, γ’) =

∑
βiγi,

and h, i are the functions described previously. These definitions are depicted
in Figure 7-7.

Fig.7-7 a)

a) DIST(i(π), i(π′)) = Σ αji(πj)

i i

ih

h h

DIST∗(π, π′) = Σαjπj

b) COMB(h(γ), h(γ′)) = Σβih(γi)

COMB∗(γ, γ′) = Σβiγi

c) DET(h(γ)) = i(π)

DET∗(γ) = π

6 6 6

666

66

?

? ?

? ?

The dotted arrows indicate that the respective functions are calculated in reverse
direction. As both h and i are one-one and onto, this is possible. The thick
arrows indicate identity.

Let us summarise this account of a formal correspondence between the trans-
mission and the molecular levels by the definition of a formal correspondence
µ between structures of the type of transmission models, and models of diploid
molecular genetics. We write

µ(x, x∗)

to abbreviate that the transmission structure x = 〈I,P,G,MAT,APP,DET,
DIST,COMB〉 and the diploid molecular model x∗ = 〈I∗, P ∗, G∗,MAT ∗, APP ∗,
DET ∗, DIST ∗, COMB∗〉 formally correspond to each other by µ. We stipulate
that this relation µ(x, x∗) holds if and only if there exist functions g, h, i, j such
that

1) I = I∗

2) the number k∗ given by the frame for x∗ and the number k of
EXPRESSIONS in x as well as of pairs of FACTORS in GENOTYPES
of x, are related as k∗ + 1 = k, and
i : P∗ → P is one-one, and onto
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h : G∗ → G is one-one, and onto

3) for all γ∗ in G∗, g maps the parts defined by the frame t0,
τ1, ..., τk∗ occurring in strands of γ∗ and their positions one-one
onto the FACTORS occurring in h(γ∗) such that order is preserved

4) for all π∗ in P∗, j maps the parts defined by the frame t0,
τ1, ..., τk∗ occurring in the strand of π∗

one-one onto the EXPRESSIONS in i(π∗) such that order is preserved

5) MAT = MAT∗ and APP, DET,DIST, and COMB are defined by
(9) and (10) above.

Note that we start from models of diploid molecular genetics, so π∗ and γ∗ are
not sets but sequences of strands.

According to the general explanations on reduction given previously the
following two conditions for µ have to be investigated. First, we have to see
whether from µ(x, x∗) we may infer that x is a proper model of transmission
genetics, provided x∗ is a model of diploid molecular genetics, and second we
have to see whether for all models x of transmission genetics there is some
appropriate model x∗ of diploid molecular genetics such that µ(x, x∗) holds. As
far as the second condition is concerned, we may state the following

Theorem 2 For every model x of transmission genetics there is a model x∗ of
diploid molecular genetics such that µ(x, x∗) holds.

The proof is straightforward, but tedious, and suppressed here. The first con-
dition cannot be met, it fails for AT5 which does not follow from the molecular
axioms and the stipulation for µ. We believe that nevertheless there is some in-
terest in looking more closely at those transmission axioms which can be proved,
and we will return to the overall failure after this.

Theorem 3 For all x, x∗, if x∗ is a model of diploid molecular genetics and x is
a structure of the type of models of transmission genetics, and if µ(x, x∗)
holds then A7, A8 from Chap.2 and AT2 to AT4 from Chap.4 are satisfied
in x.

We will give the proof in an informal way. Of structure x it is required that x
be of the right form, that is, x should have the form x = 〈I,P,G,MAT,APP,
DET,DIST,COMB〉 precisely described at the end of Chap.2. It is not
assumed that x satisfies the axioms of transmission genetics, nor those gen-
eral axioms which go beyond fixing x’s type. In detail, the axioms not as-
sumed to hold are A7 and A8 from Chap.2, and AT2 - AT5 of Chap.4. It
has to be proved, then, that these axioms follow from those holding for x∗,
and from the stipulations put forward for µ. A7: By 1) and 5) of the def-
inition of µ, the right hand side of A7 is the same both for x and x∗. So
it suffices to show that the same is true for the left hand side. This fol-
lows from the first equation in (10). A8: A8 is assumed to hold in x∗, i.e.
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COMB∗(γ, γ’)(γ∗) ≈ε DIST∗(DET∗(γ),DET∗(γ’))(DET∗(γ∗)). Mapping
γ, γ’ and γ∗ into h(γ), h(γ’) and h(γ∗), respectively, we obtain from (10) that
the left hand side is transformed identically into COMB(h(γ), h(γ’))(h(γ∗)).
The right hand side is shown to be equal to

DIST(DET(h(γ)),DET(h(γ′)))(DET(h(γ∗))).
So the approximate equality has to hold in x, too. AT2: We have to note that
AT2 comprises two requirements, one of typification, and one goying beyond
that. The requirement of typification is that each GENOTYPE is a tuple of
length 2k. This requirement cannot be derived but has to be presupposed. In
order to prove the ‘rest’ of AT2 we first define the SETS OF FACTORS i for
i = 1, .., k. Let i ≤ k be given. By stipulation 2) for µ the number k∗ of ‘cuts’ in
the GENOTYPES of G∗ is equal to k − 1, so that they cut each overall strand
in just k ‘parts’. Each such part has a position as determined by the ordering
of QUANTA on the strands, and by the order of concatenating the original
strands. We then set SET OF FACTORS i to be the set of all function values
of the form g(p) where p is a part in position number i of some GENOTYPE
in G∗. From this definition we obtain immediately that there are exactly k
SETS OF FACTORS, and that any two FACTORS ei, ej such that i is odd and
j = i+1 are from the same SET OF FACTORS. AT3: The component DETER-
MINERS DET i are defined as follows. Let s ≤ k be given. Then DET s is de-
fined on pairs of factors from the SET OF FACTORS s defined previously, and
its value is obtained as follows. Let γ = 〈〈 FACTOR(1, 1),FACTOR(1, 2)〉, ...,
〈 FACTOR(k, 1),FACTOR(k, 2)〉〉 be a GENOTYPE in G. As function h was
assumed to be onto, there is some GENOTYPE γ∗ in G∗ such that h(γ∗) = γ .
Take the opposed parts of γ∗ present at position number s in γ∗, and consider
the corresponding value of the function EX∗ required in 7) of the correlation
of the base sets. This is the part of DETERMINER∗(γ∗) in position number
s. Now consider i(DETERMINER∗(γ∗)) and take the s-th part of it. By 4)
of the definition of µ this part, call it z, is just the j-value of the original part
of DETERMINER∗(γ∗). So z is uniquely determined by the whole procedure.
We then set DET s(FACTOR(s, 1),FACTOR(s, 2)) equal to z. By 4), z is an
EXPRESSION in x, so the second equation in AT3 is satisfied. We still have to
show the first equation in AT3, namely that DETERMINER(〈〈 FACTOR(1, 1),
...,FACTOR(k, 2)〉〉 = 〈〈 DET 1(FACTOR(1, 1),FACTOR(1, 2)〉 ,...,〈 DET k(
FACTOR(k, 1),FACTOR(k, 2))〉〉. This follows from equation 3 of (10) and the
construction of the DET s, s ≤ k. AT4: This follows from AM5 and the weak
conservation principle built into the definition of combinations kinematics, to-
gether with (10).

As already stated, AT5 cannot be proved in this way. There is no as-
sumption in the molecular models by which the coefficients of the DISTRIBU-
TIONS OF PHENOTYPES are defined as relative frequencies. Such a require-
ment cannot be put forward simply because the molecular models are intended
to deal with individual (non-population) applications as well. Why not add a
corresponding assumption in the definition of diploid molecular models? Well,
this might be done, and we could then extend the proof of Theorem 3 to a full
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proof that x is a proper model of transmission genetics.
Purely formally, these results show that between the models of molecular

genetics and those of transmission genetics a formal correspondence of the ‘re-
ductive’ type can be established if sufficiently strong refinements are first made
at the molecular side. With respect to the full class of molecular models this
means that a formal correspondence exists between transmission genetics and
an appropriate refinement of molecular genetics. The two conditions expressed
by Theorems 2 and 3 may be rephrased as follows. Theorem 2 says that each
transmission model has a counterpart in the molecular theory, or can be re-
produced in the molecular theory. Theorem 3 says roughly that the axioms
for transmission models (except AT5) follow from those for diploid molecular
models, if these are translated along the lines of µ.

Can we conclude from these formal results that transmission genetics is re-
duceable to molecular genetics? Besides the purely formal dimension considered
there are the other two dimensions discussed previously which are as important
as the formal one.

The second dimension of comparison was that of intended systems. For a
reduction relation to obtain, all intended systems of the reduced theory should
‘be’, or correspond to, intended systems of the reducing theory: every system
to which the community of geneticists intends to apply transmission genetics
also should be such that the community intends to apply molecular genetics
to it. This condition is of course very hard to evaluate. We certainly have to
acknowledge that there is an area of overlap in the intended systems of both
theories. The example of sickle cell anaemia which provides intended systems
for both was discussed in detail. This is an example in which geneticists not
only intend to apply the theories, but in which both theories actually have been
applied. However, this kind of situation is not so frequent as to be dominant.
There are many other cases in which systems intended for transmission genetics
simply are of no interest to molecular genetics. Think of the spread of an
‘ordinary’ trait like wrinkled seed in a population, or of the phenomenon of
mixing of genes mentioned in Chap.1. It can be stated that systems of this kind
have not given rise to molecular application proper up to now.

We must be clear about the difference between this observation and the claim
that such systems are not intended systems of molecular genetics. The latter
claim is much stronger, and amounts to claiming that molecular geneticists
do not intend at all to apply the molecular theory to such systems. As such
intentions may be entirely about future actions and developments the fact that
no molecular application has taken place yet, cannot taken as confirming or
disconfirming evidence. We therefore cannot claim that the typical transmission
systems just referred to definitely are not taken as intended systems in molecular
theory. The best that can be said in this direction is that the present situation
allows for doubts about the inclusion of intended transmission systems in those
of molecular theory.

This brings us to the third dimension of comparison, namely that of the
processes of application. For a proper relation of reduction it is necessary that
all application processes of the reduced theory be reproduceable in the reducing
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theory. In the case before us, all processes of applying transmission genet-
ics should be reproduceable in molecular genetics. It is at this point that the
extravagancy of a reduction claim becomes visible. Consider some ‘ordinary’
application of transmission genetics to the spread of some gross trait in a pop-
ulation. As described in Chap.4 the process of application in this case amounts
to establishing data about the relative frequencies of the trait, to make up an
hypothesis about COMBINATOR and DETERMINER, and to see whether the
theoretical distribution obtained by evaluating COMBINATOR fits to that of
relative frequencies with sufficient degree. Even in cases of systems to which the
molecular model is applied this process of application can hardly be said to be
reproduced on the molecular side. The process of applying molecular genetics
differs markedly. Here, the collection of data consists of identifying strands and
the chemical quanta on them. Hypotheses about COMBINATOR are usually
taken over from the transmission side, and only DETERMINER is fixed by
molecular theory.

It is hard to see how in such cases it may be claimed that the process of
applying the molecular theory can be reproduced on the side of transmission
theory. Given a molecular process of application there are no hints at how the
DETERMINER should be chosen in a corresponding application of transmission
genetics, and the same is true for COMBINATOR. Moreover, the molecular ap-
plication does not provide any data about DISTRIBUTOR in a corresponding
transmission model. Even without attempting further clarification of what is
meant by ‘reproduction’ of a process of application it is obvious that the molec-
ular processes of application cannot be reproduced in transmission genetics.

Rather, the picture emerging from consideration of such processes is a pic-
ture of completion. When seen from our basic model of genetics the processes
of applying molecular theory seem to complete those of applying transmission
genetics, as was already noted in Chap.1 and Chap.5. Perhaps not always, but
in many cases anyway, it is only after a first round of observation and fitting of
appropriate hypotheses to observed distributions of gross characters that molec-
ular methods come into play. Without these foundations in the transmission
branch, molecular applications proper would concern only a small part of our
model, centering on DETERMINER in either of its (molecular or transmission)
versions.

These considerations may be summarised by stating that even though there
is the possibility of formal correspondence between the models of transmission
and diploid molecular genetics, we cannot claim that this amounts to a relation
of reduction between the two branches. The situation with respect to intended
systems is undecided, but with respect to the processes of application there is
no overall, homogenous way to correlate such processes on both sides. Even on
the purely formal side the situation is not very satisfactory. We have gone into
the details of spelling out a formal correspondence and the details of the proof
of Theorem 3 in order ot make clear that this correspondence is more of a formal
exercise than of doing gentics. Roughly, the strategy that becomes visible in
this formal part is this. In order to reproduce transmission models, try to do so,
and, whenever there is some point of failure, add a corresponding assumption
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to those of molecular theory so that you can go on. It cannot be said that the
assumptions added about ploidy, decomposition into parts, populations proper,
are nonsense from the genetic point of view. What can be said, however, is that
these assumptions are added ad hoc. They were not founded upon independent
consideration of molecular theory, but were ‘detected’ only in the context of
comparison. To put it differently, these assumptions did not have a standing of
their own in molecular genetics.

There are further negative points, however. Up to now we only compared the
general transmission models with those of (diploid) molecular genetics. In order
to have a full reduction of transmission to molecular genetics we should also
be able to find molecular counterparts for Mendelian and linkage genetics. We
might set out and look for formal correspondences for these two refinements,
too. In fact, we can find appropriate refinements of molecular models which
make such formal correspondence possible. The strategy for their production
is that described previously. Further assumptions have to be made, using new
basic concepts in order to obtain refinements with which Mendelian and linkage
models could be correlated.

Refinements obtained in this way again have an air of being contrived, how-
ever. They have no standing in molecular genetics. They would be artificially
invented just for the sake of reduction. Although the possibility of their con-
struction seems to demonstrate the richness of molecular models, this by itself
cannot be taken as an argument for overall reduceability. At the level of compar-
ison of whole theory nets it is not sufficient for reduction that for each refinement
on the reduced side there can be constructed a corresponding refinement on the
reducing side. Such a weak notion involving mere possibilities can indeed be
shown to follow logically from a formal correspondence of the respective core
models on either side. In order to have reduction at the level of theory-nets
for each refinement on the reduced side there has to be a corresponding refine-
ment on the reducing side which has to exist and to be acknowledged before the
reduction relation is at issue. This condition is not met for the case before us.
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Chapter 8

Conclusion and Perspectives

One central theme of this book has been to abstract unifying features in genet-
ics. We have used metatheoretical models which proved fruitful in many other
disciplines in order to give more inner structure to the representation of the
whole discipline. This has allowed a broad account of genetics to be rigorously
treated. Our way of showing the unity of the field was to start with one com-
mon, basic model from which all other models subsuming the different areas of
application could be obtained by successive refinement. In the net structure of
the discipline thus becoming apparent, we have taken transmission genetics and
molecular genetics as central. In fact, a marked similarity in the basic or ‘core’
structures of each was found, although there were many differences at the level
of specialisation or refinement. It is these differences in specialisations which
account for the obvious differences between the subjects apparent in textbooks
and scientific papers. Indeed, if this distinction between the core structure and
refinements is maintained, it is possible to show a unification of molecular and
transmission genetics.

The overall net structure of the discipline’s models deserves further recog-
nition. Besides showing that the field is unified, and precisely how its parts
are interrelated it may also be regarded as an instrument for guiding research.
Research is basically conservative in that new hypotheses which have to be ad-
vanced in order to keep theory consistent with the data are usually chosen such
as to only deviate from the established core of models as much as is really nec-
essary. This conservative strategy can be substantiated to some extent using
the net picture of a discipline. In the case of contradiction one has to give up
one node in the net but one wants to keep as many other nodes as possible. If
the nodes are related by refinement only, this may be achieved simply by going
‘ upward’ in the net to the ‘next coarser’ node, and by trying to refine this in a
new way such that fit to the data can be achieved. Only if this is not possible
will one have to go further ‘upward’, but examples of such more comprehensive
moves are rare. We would mention that such a distinction between core models,
refined models, and the corresponding net structure is not readily made in any
other account of which we are aware.

We see another achievement of the present work in the simple fact that we
did succeed in axiomatising the various genetic subfields. Roughly, this amounts
to choosing a fixed list of terms, or primitives, and a definite list of axioms or
basic assumptions such that all, or at least most, of the statements and claims
made in the field can be derived from those either directly, or by intermediate
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steps of further refinement of the assumptions. In actually presenting such
sets of assumptions we are in direct opposition to claims that in genetics no
set of basic axioms can be made out.69 By looking at the textbooks, or by
looking into experimental research this impression might perhaps be created
because geneticists, as any other scientists, are usually concerned with genetic
research, and not with questions as to whether this or that statement might
be more central or allow for the derivation of many or fewer other statements.
However, as stated already in Chap.7, once a discipline becomes comprehensive
there is a drive towards clarification and simplification, be it for purposes of
review, teaching, planning and design of research strategy or indeed of scientific
argument in the context of scientific progress. We think that our analysis shows
that axiomatisation is possible, and we also think that some substantial steps
in this direction have been made. Of course, we do not deny the possibility of
further improvement.

Another way of looking at the issue just addressed is in terms of application.
In the process of application as described in some detail before, usually a great
number of additional ad hoc assumption are made which are not all covered by
the theory’s axioms, even if the theory used is already very special. In order
to do empirical research, it is advantageous to make as many such special as-
sumptions as necessary. This yields one successful application. However, there
is a problem with this strategy as soon as we come into a more advanced stage
where there are many different applications. How can these be systematised if
each of them is dependent on a large number of assumptions particular to it but
not to other systems? Developing theoretical models involves abstracting from
the features peculiar to only single, or few, systems. We think that we have
achieved some degree of such abstraction. This also holds perhaps with even
more weight in attempts at comparing different models and theories. The anal-
ysis underlines the problems which will result when relations between differing
areas of genetics are sought at a ‘local’ level of particular applications rather
than at the level of comprehensive theory-cores. Not that such relations are im-
possible to demonstrate, but that they rely on special features of the particular
application considered and do not add clarity to the overall situation.

On the other hand, we have tried to keep things legible. We have avoided
formalism whenever possible. In chapter 7 the limitations of this have become
visible. When things become somewhat complicated symbolic notation is un-
avoidable in order not to lose sight of some of the details.

Although our underlying thesis has been one of unification, and in this
we have not been disappointed, the problem of intertheoretic relation between
molecular genetics and transmission genetics when seen as separate entities is
appreciated. We feel that in order to carry out such an analysis, an adequate
formalisation of the areas concerned is necessary. When this is done, it is evi-
dent that forming direct relations between fully fledged theories is indeed very
complicated, and there is some difficulty in finding a fully satisfactory result.

While it was not our intention, we also found that one major concept from

69(Kitcher, 1982).
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genetics cannot be formulated unambiguously, ironically, the ‘gene’ itself. Other
writers have studied the variation found in this concept non-formally with sim-
ilar findings. Essentially, each ‘gene’ has to be seen against its theoretical back-
drop. Thus, it is difficult to take the ‘gene’ as a primitive concept, and we do
not. If the relations between different areas of genetics are studied in a manner
which takes the ‘gene’ as a primitive, difficulties are likely to arise. One partic-
ular problem here turns up when we try to identify the ‘gene’ in transmission
genetics with ‘DNA’ in molecular genetics, a popular identity. We then overlook
that the DNA molecule only gains genetic status by virtue of the Watson-Crick
model, that is, by means of a corresponding theory. Therefore, the identifica-
tion cannot be made unless it is shown that the two versions of the concept as
determined in the two corresponding theories, in fact are compatible. As far as
we know, no such attempt has been made up to now.

Important though the question of the relation between molecular and trans-
mission genetics is, and its bearing on the unity of genetics, we have been able
to generalise further. Our models are compatible with those of the genetic al-
gebraist, providing access to powerful tools of analysis in population genetics,
and to multiple generations. As shown in Chap.6 our models may be taken as
providing the empirical genetic basis of the mathematical formalisms of genetic
algebras as well as of pedigrees. We made some effort to show how our unified
models would operate in contemporary studies of pedigrees.

Our models point towards two further applications, one of which we antic-
ipated, while the other one became clear only when the overall structure was
apparent.

Certainly from the beginning we were aware of the great potential which
formalisation of the kind undertaken has for computer application. Indeed,
we even adjusted our notation to this, at least to some extent. Thus turning
all the expressions written in capital letters into lower case letters we have all
the concepts ready to be typed into the computer in PROLOG, which at the
moment is the language for AI applications.70 On the basis of our definitions
it is fairly easy to formulate rules for expert systems for the areas covered by
our different models. The only thing we did not do, is to transform our axioms
into production rules. Though this may not be entirely trivial it seems not too
difficult for an experienced programmer. Thus our models may form the basis
of several expert systems for the areas of genetics treated.71 In contrast to the
way expert systems are usually developed, the way open on the basis of our
models is more permeated by theory. In order to arrive at useful applications
of the computer along these lines, further special assumptions (in the form of
further production rules) will have to be added to the basis provided by our
models. We believe we may claim to have gone a long way towards the end of
computerisation of global models of genetics, and we hope to go further in that
direction in the future.

Another perspective less evident in the beginning of our work which has

70A legible introduction to PROLOG is (Clocksin and Mellish, 1984).
71The best known expert system in genetics is MOLGEN, see (Stefik, 1981a,b).
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now become apparent is this. One line for future investigation by geneticists
undoubtedly concerns the relation between molecular processes and evolution.
It is increasingly accepted that crossing over and recombination are not ran-
dom processes, as had once been imagined. Furthermore, they may be under
genetic control. Certainly, there are ‘hot spots’ for crossing over, making those
progeny with certain combinations of characters more likely to appear. If this
is considered against the backdrop of natural and sexual selection, there arises
an interesting interplay between molecular genetics and evolution. The study of
evolution has historically more in common with that of transmission genetics,
however. Conceivably, a better understanding of the overall structure of genet-
ics may assist in research into this interplay between evolution and molecular
genetics.
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