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Abstract : A 3P model (production, predation,protection) which can be game theoret-
ically solved for two actors is generated to n actors and studied by means of discrete
simulations. The simulation con�rm robust incentives for actors to produce and pre-
date in an institution free enviroment, whereas protection activity is not signi�cantly
related to the ability for protection. The model is criticized for its neglect of preda-
tors predating on each other, and for its inability to reproduce real-life proportions
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Introduction

In the last decade, social scientists have shown growing interest in the formal analysis
of social institutions.1 Economists, sociologists, political scientists and philosophers
of science have contributed to this formal and mathematical modelling of institutions
(their emergence, dynamic properties and stability).

At the same time computer simulations of social phenomena shifted from `tradi-
tional' numerical simulations based on mathematical equations to agent-based, dis-
crete event simulations. This new computational approach to modelling and simulat-
ing social phenomena has given birth to several new �elds of research such as compu-
tational organization theory (Prietula & Carley, 1994), (Prietula, Carley & Gasser,
1998), computational sociology (Bainbridge et al., 1994), computational anthropol-
ogy (Doran, 1995, Dean at el., 1998), computational social psychology (Nowak &
Vallacher, 1998) and last but not least , computational economics (Tesfatsion, 1998).

1The formal approach based on deductive reasoning is sometimes opposed to the descriptive
approach of the `old' institutionalist school of the Commons variety (Commons, 1934). However,
such an opposition between a theoretically driven `new' institutionalism and an `anti-theoretic' old
institutionalism does not seem adequate; see (Hodgson, 1998) who stresses the early institutionalists'
concern for theoretical issues.
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The aim of this paper is to contribute to this new research agenda by adding
computational institutional analysis or briey CIA2 to the list of computational social
�elds. As we envision it, CIA combines the formal modelling of social institutions with
new methods of doing agent-based computational social science. The present paper
is a step in this direction. We take up an economic, game theoretical model and
investigate its potential for the understanding of institutions by means of simulation.

One way of theorizing about social order is by classifying actors in terms of the
types of the actions they perform. Going back to a very basic, almost `prehistoric'
level, three broad types of of activities which seem to be promising for this task are
production, predation and protection, where predation is understood to comprise all
forms of taking away things or resources from a person against that person's will, and
protection means to protect own0sown possessions, resources and body. The propor-
tions in which members engage in these activities may be used to draw distinctions
between di�erent forms of social organization - whether historical-empirical or mere-
ly conceptual. In a society of slave holders the slaves do not engage in protection,
whereas the peasants in a peasant society do so. Conversely, the slave owners spend
quite some e�ort on protection, much more than does a leader in a rural society.
More precisely, the approach consists of looking at the proportions of time which a
person devotes to production, predation and protection, to use these proportions for
a classi�cation of the persons, and to analyze the relative sizes of the classes to ob-
tained. A person spending almost all her time on production thus may be classi�ed
as a producer, while it is not easy to �nd a natural label for, say, a person devoting
her time equally to production, predation and protection eventhough the kind of such
persons is determined theoretically in a precise way.

This approach may be pursued by starting from simple, `institution-free' economic
models in which the optimal or equilibrium distribution of persons' times is studied in
a game theoretic setting. We here generalize a simple one-good, two-agent hobbesian
model studied in (Houba & Weikard, 1995) which deals with the optimal allocation of
actors' times on the three kinds of activities: production, predation, and protection,
this is why we speak of a 3P model. On the basis of his utility function which depends
on the amounts of time all actors spend on each activity, each single actor tries to
optimally distribute a �xed, total amount of time among the three types of activities.
As game theoretic analysis becomes very di�cult, if not practically impossible, for
numbers of actors greater than two, simulation o�ers itself as the natural tool to be
used.

We introduce the generalized 3P model, and describe how this is simulated in
a discrete event setting. We then explore its potential by investigating the connec-
tions between actors' abilities to produce, predate and protect, and the percentages
in which these abilities are present in the population. These connections found in dif-

2This �eld of research has something in common with its more famous counterpart. Computational
Institutional Analysis is at the center of economic analysis, it is (arti�cial) intelligence based and,
�nally, it is agent based. Needless to say, we do not pursue the same objectives.
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ferent simulations are critically discussed in the light of corresponding, presystematic
expectations. We describe some expected, `nice' results, but also a number of unex-
pected results indicating de�ciencies of the present, basic model. In spite of these
negative results we believe that the model has a great potential for modi�cations and
re�nements.

A �rst positive result is that predation is `robust' in the sense that actors who
are best at predating (i.e. whose ability for predating exceeds that for production
and predation) in most cases spend almost all their time on predation. Moreover, the
time spent on predation increases sharply with an increase of the ability to predate,
and does not much depend on variation of the other abilities. This �nding points to
a natural incentive which theoretically could back Hobbes' state of nature. A second
positive result is that production time also increases with an increase of the ability
to produce, though the degree of increase varies with other parameters, in particular
with the coe�cients for the other abilities and the percentage of producers in the
population. This also indicates a natural incentive, and the variability of increase
opens the way for studying the systematic e�ects of other, `external' parameters on
the incentive to produce.

Negatively, we �rst found that actors which are best at production not only tend
to spend increasingly more time on protection when the number of predators increases
(which is naturally expected), but in many cases they spend the overwhelming part
of their time on protection, even with moderate numbers of predators.

This is of interest to CIA for the following reasons. On the one hand, as far as
we know, such a pattern of activities (spending almost all time on protection) is not
observed in civilized societies nor does the limited knowledge of pre-history indicate
such behavior. On the other hand, this e�ect points to a feature which is not covered
by `standard' economic approaches to social institutions, namely their functional role
in weakening the protective capacity of `producers' (whether to the bene�t of `law
and order' or of `predators' can be left open). The excessive time spent on protection
we found in many simulations shows that this functional role is not captured by the
present model (and by other economic models of the hobbesian variety). In this re-
spect, power-centered models based on the interactions between a larger set of agents
(autocrats, bureaucrats, bandits, and producers ...)3 would probably give a more re-
alistic picture of the social institutions we are trying to model and simulate. However,
in the present paper we adhere to the `KISS' principle advocated by (Axelrod, 1997).

Another negative result is that protection time in most cases does not mono-
tonically increase with protection ability. A �rst interpretation is that the ability for
protection is dominated by the other two abilities, and thus not really an independent
variable. This interpretation is also supported by the intuitive observation that the
abilities for predation and protection in a pre-historic environment are closely related
to similar kinds of bodily skills and strengths.

3Examples of such economic models may be found in (Usher, 1993) or (Wintrobe, 1998), see also
(Balzer, 1990).
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Finally, in simulations where abilities were lognormally distributed in the popu-
lation, we were not able to produce patterns of time proportions corresponding to
presystematic, real-life expectations, like, say, 70% of the population spending 80%
of time on production and 30% spending 80% of time on predation.

1 The Basic Hobbesian 3P Model

It may seem strange to start an analysis of social institutions by modelling an institution-
free hobbesian world. But as noted by (Wol�, 1996) in his analysis of Hobbes' state of
nature, `To understand why we have something, it is often a good tactic to consider
its absence'. Hence, one way to examine how social institutions emerge and what type
of social interactions (exchange based vs. power based) underlie these institutions, is
to start from an institution-free setting of which Hobbes' account is perhaps the most
famous example.

Since Bush's pioneering work (Bush, 1976) there have been numerous articles and
books4 devoted to the modelling of conictual anarchy of the hobbesian variety.5

We here study a simple representative of the hobbesian variety of models in order to
show how such a model, when generalized to a multi-agent computational world, may
give rise to interesting features that could (practically) not be found by paper and
pencil. However since, as pointed out by (Binmore, 1998), computer simulations are
not a substitute for deductive reasoning based on sound theoretical microeconomics
or game theory we shall �rst give a brief account of the theoretical model underlying
our multi-agent simulations.

In the hobbesian world, there are no property rights or social norms to regulate
agent interactions. In order to survive in such a world, individual agents undertake
three basic types of activities: they produce, they use force to steal (predate) and they
protect themselves against the predatory activities of others.

People are not equal in their abilities for doing so. Some are stronger than others,
some are better at producing than at stealing. Depending on their relative abilities
individuals produce, steal and protect themselves by equating the marginal returns
of these three basic activities. The results of an actor's marginal calculus depend on
the behavior of the other agents with whom she interacts. In most approaches this
interactive behavior is modelled by Cournot-Nash type assumptions but a few models
use Stackelberg type (leader-follower) assumptions.

Adopting the two-persons generalization of (Houba & Weikard, 1995) of Bush's

4A critical review of these models is found in (Albert, 1999).
5We are reluctant to use the term `anarchy' in connection with conictual models opposing bandits

(predators) to peasants (producers) because this tends to con�rm the widespread prejudice that
anarchy implies �ghting or a hobbesian state of nature. Originally, anarchy only means absence
of domination. Though predation, robbery and exploitation are compatible with the absence of
domination, they are by no means implied by such absence, as Hobbes made us believe. See (Flap,
1985) for a counter example. The hobbesian state of nature in which everyone �ghts everyone is only
one among many other conceptual - including less frightening - alternatives. See also the comments
of (Dowd, 1997) on Hirshleifer's model (Hirshleifer, 1995) of conictual anarchy.
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original model, let us consider two persons i; j. Let Pi1; Pi2; Pi3 be the production,
predation and protection functions of individual i (those of j are obtained by inter-
changing i and j).

(1) Production: Pi1 = f1(ai1; ti1)
(2) Predation: Pi2 = f2(ai2; ti2; Pj1; Pj3); i 6= j
(3) Protection: Pi3 = f3(ai3; ti3),

where the aip > 0 are individual parameters for, respectively, the productive (p=1),
predatory (p=2) and protective (p=3) capacities of individual i, called abilitiy coe�-

cients in the following, and tip denotes the time devoted by individual i to activity
number p. Whereas the production and protection functions (1 and 3) depend only
on i's own parameters and variables, the predation function (2) includes arguments
that do not only depend on i's own capacities and time devoted to predation. The
predation function also depends on the other person's time and capacities devoted to
production and protection. The more j produces the more i can steal from him, but
the more j protects himself the more costly is it to steal from him.

Each individual k has a utility function Uk it seeks to maximize. A simple form
for Ui suggested by (Houba & Weikard, 1995) is this:

(4) Ui = Ui(ti1; ti2; ti3; tj1; tj2; tj3) = Pi1 + Pi2 � Pj2; j 6= i

Thus Ui is equal to what i is able and willing to produce (captured by Pi1) plus what
she is able and willing to steal from j (captured by Pi2) minus what is stolen from
her by the other actor j (captured by Pj2).

In (Houba & Weikard, 1995) the functions f1; f2 and f3 are generally speci�ed as
follows. For k = i; j,

(7) fk1(ak1; tk1) = ak1tk1 and fk3(ak3; tk3) = ak3tk3
fi2(ai2; ti2; Pj1; Pj3) = ai2(ti2)

�iPj1(1� Pj3); and
fj2(aj2; tj2; Pi1; Pi3) = aj2(tj2)

�jPi1(1� Pi3):

Using (7) we obtain the following general expressions for Ui and Uj .

(8) Ui(ti1; ti2; ti3; tj1; tj2; tj3) = ai1ti1 + ai2(ti2)
�iaj1tj1(1� aj3tj3)� aj2(tj2)

�j

ai1ti1(1� ai3ti3),
Uj(tj1; tj2; tj3; ti1; ti2; ti3) = aj1tj1 + aj2(tj2)

�jai1ti1(1� ai3ti3)� ai2(ti2)
�i

aj1tj1(1� aj3tj3):

Each actor k seeks to maximize his utility subject to the constraint that tk1+tk2+tk3 �
T where T is the total amount of time available in the period considered which, for
reasons of simplicity, is set equal to 1 for both actors. Clearly, both actors are strate-
gically interdependent since in (8) i's utility depends on the times chosen by j and
conversely. The resulting game can be analytically solved for two actors.
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2 The General Model

We generalize this model to the case of n actors as follows, retaining the assumption
of one single good that is produced by everyone. Each of the n actors i (i = 1; :::; n)
has a utility function Ui depending on the 3n times which all actors spend on the
three activities: production, predation and protection. For each i, the times i spends
on production, predation and protection, respectively, are denoted by t1i ; t

2

i and t3i .
Thus i's distribution of time on the three activities is given by ~ti = (t1i ; t

2

i ; t
3

i ) and i's
utility function may be written as Ui = Ui(~t1; :::; ~tn). When the time distributions of
the other actors j; j 6= i, are held constant, we simply write Ui = Ui(~ti). We assume
that i's utility function has the following form

(9) Ui(~t1; :::; ~tn) = ai1ti1
+ ai2(ti2=(n� 1))�i�j(aj1tj1(1� aj3tj3))
�min(1; (�jaj2(tj2=(n� 1))�j ))ai1ti1(1� ai3ti3)

where 0 < �i < 1, 0 � ai1; ai2; ai3 and ai1 + ai2 + ai3 = 1 for i = 1; :::; n. The
ability coe�cient aip expresses the `ability' or `e�ciency' with which actor i performs
activity number p(p = 1; 2; 3) for production, predation, protection), and tip is the
time i spends on activity p. The three components of Ui in (9) may be interpreted
as follows. The �rst component ai1ti1 represents the amount of the single good which
i produced, depending on her productive ability ai1 and the time ti1 she spent on
production.

The second component may be best understood if we rewrite it as (n � 1) [
ai2(ti2=(n�1))

�i(1=(n�1))�jaj1tj1(1�aj3tj3) ]. ai2(ti2=(n�1))
�i is the `weight' of i's

activity of predating when i predates one of the n other actors, on the assumption that
i splits his `predation time' equally on all other actors. The average, `non-protected'
production of some actor thus predated by i is (1=(n � 1))�jaj1tj1(1 � aj3tj3). So
ai2(ti2=(n� 1))�i(1=(n� 1))�jaj1tj1(1� aj3tj3) is i's utility from predating one `av-
erage' fellow actor. In order to obtain i's total utility this expression has to be taken
n� 1 times.

In the third part, (tj2=(n � 1))�j gives the `size' or `weight' of that part which
j can take away from i's non-protected product ai1ti1(1 � ai3ti3) on the assumption
that j spends her `predation time' tj2 equally on all other actors. Thus the third part
refers to the sum of all parts which are taken away from i's non-protected product by
all the other actors. Since in the case of more than two actors the sum of all `weights'
may be greater than 1 we have to take the minimum of this sum and 1 in order to
prevent a change of sign in the third component.

As an analytic treatment of these general equations is very di�cult, if not prac-
tically impossible, the best way to proceed is by simulation. We use a discrete event
simulation shell called SMASS (Sequential Multi-Agent System for Social Simulation)
written in PROLOG (Balzer, 1999). This shell executes simulation runs over a �xed
number N of periods such that in each period, each actor is called up for action ex-
actly once. The task of implementation in this shell reduces to the formulation and
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implementation of a rule of behavior according to which each actor acts when called
up in a period T .

3 The Simulation

As the above analytic model is static, we have to �nd a way using a dynamical
simulation in order to obtain the static distributions of actors' times devoted to the
three di�erent activities. This is done as follows. The model's total time interval which
is captured in one simulation run, is represented by the number N of all periods over
which the simulation is run. Assuming that each actor in each period acts just once
we can count the numbers m1;m2;m3 of periods in which he produces, predates, or
engages in protection, so N = m1 +m2 +m3. We identify these numbers m1;m2;m3

with the times t1; t2; t3 an actor spends on the three activities in the solution of the
analytical model.

A second problem is to formulate a rule of behavior expressing the maximization
assumptions which in the analytic model are applied to the equations (1)-(4) and
(5) and (6) above. In principle, one could try to just let each actor solve the above
equations and distribute her time according to that solution. This is impractical,
however, because we consider more than two actors, and for larger numbers we simply
wouldn't know how to solve the equations. We therefore formulate a di�erent basic
rule of behavior as a substitute for the assumptions of the analytic model.

To this end during the course of the simulation a `history' is built up recording
in each period T the numbers of periods every single actor spent on each of the
three activities up to the present period T . Thus if actor i is called up in period T
her history ~hi;T will consist of three numbers ~hi;T = (hi1;T ; hi2;T ; hi3;T ) such that
hi1;T +hi2;T +hi3;T = T and each hip;T is the nmuber of periods in which i performed
activity number p(p = 1; 2; 3). Such a history gives the distribution of the times i
spent on the three activities.

Instead of the utilities Ui(~t1; :::; ~tn) derived from the `�nal' proportions of times
we now may consider utilities derived from the relative proportions of times spent up
to a given period T , i.e. utilities depending on the actors' histories up to T

Ui(T ) = Ui( ~h1;T ; :::; ~hn;T ), where ~hi;T = (h1i;T ; h
2

i;T ; h
3

i;T )

We apply the following rule of behavior. An actor i in period T calculates the marginal
utilities for each of the three activities, and chooses that activity which yields highest
marginal utility. The marginal utilities are those actor i would derive from spending
one more period on production, predation or protection, given that up to period T he
spent the times (h1i;T ; h

2

i;T ; h
3

i;T ) on these activities. i's marginal utility for production
in period T is thus de�ned by

(10) Ui( ~h1;T ; :::; (h
1

i;T + 1; h2i;T ; h
3

i;T ); :::;
~hn;T )� Ui( ~h1;T ; :::; ~hn;T ):

The marginal utilities for predation and protection are obtained in the same way by
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adding in (10) one period to h2i;T and h3i;T , respectively.
6

In (10) the other actors' histories enter in the calculation of i's marginal utilities;
these are taken as they are found at the time of execution in period T .7

In the analytical model a solution or state of equilibrium is a list of time distri-
butions (~t1; :::; ~tn) (a `state') satisfying a condition of maximality or equilibrium. In

the simulation such a state corresponds to the actors' final histories ( ~h1;N ; :::; ~hn;N )
where N denotes the total number of periods for which the simulation is run. While
the simulation is running, the histories ~hi;T steadily change when T grows from 1 toN .

However, we can say that the system in state ( ~h1;T ; :::; ~hn;T ) has become stable if the
fractions hip;T 0=T 0 do not change signi�cantly for all T 0 such that T � T 0. For instance,
when the �nal distribution of i's time is (0.5,0.5,0) - i.e. i spent half of her time on

producing and half of it on predating - then for N = 100; ~hi;N = (50=100; 50=100; 0):

When the system has become stable, say in period 70, then ~hi;70 = (35=70; 35=70; 0)
and these fractions will show only insigni�cant deviations for T > 70. As the system
operates with integers, they cannot remain strictly identical because, say, forN = 100,
in each period one of the history's components will be increased by 1=100.

The states which are stable in this sense may be taken as the analogues of analytic
solutions. For all simulations performed we found that 100 periods were su�cient to
reach a stable state when deviations were allowed up to � = 0:02. The stable state in
most cases was reached between periods number 60 and 80.

4 Simulation Results

We performed a number of simulations in order to explore the space of possibilities
given by variations in the parameters: numbers of actors, ability coe�cients, expo-
nents, and initial distributions of predators and producers in the population. This is
a huge space and it does not seem a good idea to try to explore it fully systematical-
ly. We varied several items in more systematic fashion, but only so within relatively
narrow boundaries. Each simulation run captured 100 periods and in all runs a stable
state was reached. Each simulation was repeated ten times with the same initial data.
The results reported here are the mean values over these repetitions, deviations from
these means were usually in the order of 0.01.

Even within a homogenous population of completely identical actors, slightly dif-
ferent results are observed for di�erent actors. This e�ect is due to the multi-agent
character of the simulation in which it makes a di�erence, for instance, whether in
a period one of the few predators is called up at the beginning or towards the end
of the period, i.e. before most other actors have chosen their activities and acted, or
after that. However, these individual di�erences usually are not signi�cant, deviations
being smaller than 0.02, and usually much smaller. For this reason, we do not di�er-

6As periods are represented by integers, the natural unit here is 1.
7This amounts to asynchronous updating.
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entiate in the following description between single actors, and just report the results
for one arbitrary, representative member of each sub-population.8

In a �rst series of simulations we used ability coe�cients that are lognormally
distributed in the population. As these coe�cients consist of three components whose
interdependency is di�cult to judge empirically we used a mix of two di�erent random
processes to create them. We �rst created lognormally distributed numbers bi - one
for each actor i - within the interval [0,1]. We then split the `rest' 1�bi(� 0) randomly
into two parts bi = ai + ci, and used [ai; bi; ci] as coe�cients of actor i. Each run was
repeated 10 times.

De�ning `producers' i as those actors whose ability for producing, ai
2
, is strictly

greater than that for predating, ai
2
, and predators as all other actors, the population

split up into x% of producers and (1-x)% of predators. With varying numbers of actors
x varied in the interval [40,60].

The means of the ability coe�cients and the time pro�les did vary with variations
of the number of actors, but this e�ect is mainly due to the fact that for a di�erent
number of actors, the ability coe�cients are newly created in the random way de-
scribed earlier. Table 1 summarizes some results.

Table 1

number of actors 10 50 100
percentage of 50 42 43
producers . . .
mean producer: . . .
ability coe�s (0.36,0.10,0.53) (0.51,0.14,0.33) (0.46,0.13,0.40)
time pro�les (0.55,0.17,0.27) (0.23,0.57,0.18) (0.18,0.64,0.17)
variances (0.007,0.041,0.021) (0.035,0.174,0.052) ([0.038,0.180,0.060)
of time . . .
mean predator: . . .
ability coe�s (0.18,0.58,0.22) (0.16,0.59,0.23) (0.14,0.60,0.25)
time pro�les (0.13,0.86,0) (0.01,0.98,0) (0.01,0.98,0)
variances (0.009,0.009,0) (0,0,0) (0,0,0)
of time . . .

Remarkably, in populations of more than 40 actors, a `mean producer' spends more
time on predating than on producing. This means that several single producers, i.e.
actors who are more able to produce than to predate, nevertheless spend more time
on predation, which, for them, is the inferior activity. This result clashes with the as-
sumption of rationality underlying the model. However, we can interpret it as showing
that the incentive for predation which is incorporated in the form of the untility func-

8As a warming up exercise we simulated the Houba-Weikard 2-actor model with the coe�cients
[2; 0; 1] for the producer and [1; 1; 0] for the predator. This yields the expected Nash equilibrium at
(0; 0:3968; 0:2063) - the remaining times being uniquely determined by the time constraint - for the
predator, which in this case also can easily be computed by hand.
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tion is much stronger than that for production so that it surpasses the prima facie

incentive given in terms of the ability coe�cients.
By contrast, the `mean predators' do not spend much time on producing even-

though they have a non-negligable coe�cient for production. Moreover, the `mean
predators' do hardly spend any time on protection, which in many simulation means
that no single predator does so. This outcome conicts with the intuition - external
to the model - that predators also should predate on their `fellow' predators. Given
the high percentage of predators in the population (often more than 50%), one would
want to see a substantial amount of time spent by predators on protecting them-
selves against each other. However, this incentive is not captured by the model. The
third, negative part of the utility function depends multiplicatively on the actor's own
product (ai1ti1) in (9) which, for predators is neglegible. According to (9) a predator
spending no time on production has nothing to protect. In reality, even in the basic
case in which all products - whether produced or robbed - are consumed in the same
period, there is the possibility of one predator taking away from another one the good
which the latter just robbed from a third person.

Looking at how each single time component tr (e.g. the time spent on predation,
r=2) depends on a single ability coe�cient as (e.g. the coe�cient for production,
s=1), we arranged the coe�cients that are present in the population in an increasing
order so that for the set fi1; :::; ing of actors we got as(i1) < ::: < as(in). When for
each as(ij) we plot the corresponding time ts(ij) in a diagram the dependence (in a
population of 100 actors) can be graphically depicted as in �gure 1.

Figure 1
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Distinguishing increase (+) from decrease (-), and degrees of the strengths of the
connections ( 1 = strong and regular, 2 = weak and regular, 3 = irregular) all the
dependencies are summarized in table 2.

Table 2

. increasing coe�cient for . .

. production predation protection

time spent on . . .

production +,2 -,1 +,3
predation -,2 +,1 -,3
protection +,3 -,1 +,3

These connections do not change when they are restricted to the two subpopulations
of producers and predators.

The absence of a regular increase of protection time with an increase of protection
ability (even in the subpopulation of producers) we �nd unsatisfactory. As producers'
product increases over time (in the simulation), and as there are many predators,
producers should have a strong incentive for protection which is also in accordance
with the form of the utility function (9).

In these simulations on might suspect that the results depend on the initial creation
of lognormally distributed ability coe�cients. In order to control for this we conducted
a second series in which we focused on one ability coe�cient. When this was �xed,
the percentages of producers, predators and protectors (de�ned in terms of abilities),
as well as all the other coe�cients were varied randomly. The random creation of the
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`other' parameters was repeated 20 and 50 times. Doing the simulation for di�erent
values of the focused ability coe�cient, like 0.2, 0.25, 0.3, ..., 1, and plotting the times
spent on one activity against the focused coe�cient, we obtained qualitatively the
same results as in the �rst series. Figure 2 shows some dependencies for the series
0.2, 0.25, 0.3, ..., 1 of coe�cients number s on the x-axis and times number r on the
y-axis.

In a third series, we investigated the sensitivity of the model in dependence of the
absolute numarical values of the ability coe�cients. Instead of normalized ability co-
e�cients (adding up to 1) we used larger numbers, and studied the system's behavior
for di�erent, �xed sets of coe�cients and proportions of producers and predators. We
started with normalized coe�cients, multiplied them by 10, 20, 30 and gauged the
(1-...) expressions in (9) to the absolute values, e.g. when using coe�cients adding
up to 10, the `1' was replaced by `10'. In a population of 20 actors we ran all com-
binations of coe�cients (0.8,0,9.2), (0.4,0.4,0.2), (0.1,0.1,0.8) for producers, (0,1,0),
(0,0.7,0.3),(0.3,0.4,0.3) for predators and percentages 100, 80, 60, 40, 20 of producers
in the population.

There was no signi�cant variantion of predators' times in dependence on the ab-
solutesizes of ability coe�cients, and variantion for producers was relatively small,
never exceeding 30%. We may say that the model is moderately robust with respect
to the absolute sizes of ability coe�cients.

Figure 2
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We also varied the exponents �i attached to predation times. In (9), and in the earlier
simulations these exponents had been uniformly set equal to 1/2. In a fourth series
of exponents 1/2 were replaced by smaller and larger values (0.2,0.4,0.8,1), but still
each acots's utility function was calculated with the same exponents. Running the
simulation in the setting of series 3 above we found that the times of predators are
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hardly a�ected by changes of the exponents. The main e�ect observed for producers
was that when their percentage in the population decreases below a threshold, they
split their times nearly equally on production and predation. The only e�ect of vary-
ing exponents is that this threshold decreases with growing exponent, but also with
decreasing predating ability of the predators.

In a �nal series we tried to reproduce `reasonable' empirical time distributions
as found in existing populations. For example, in a slave holder society (Knight,
1977), a �rst guess for time distributions would be (1,0,0) for slaves (which form, say
40 percent of the population), and (0,0.6,0.4) for non-slaves (making up 60 percent
of the population). That is, slaves spend all their time of production, while non-
slaves split their time on 60% of predation and 40% of protection. We started a
search program which tried to �nd ability coe�cients for which the time distributions
resulting in a simulation with such coe�cients �tted with the times and percentages
�xed beforehand.

This resulted in complete failure. For none of three `reasonable', initial time dis-
tributions and percentages the program found coe�cients such that the simulation
results would �t with the given times and percentages. Even if we admit that the
search algorithm used is perhaps very ine�cient this indicates that the model in its
present form is not su�ciently exible.9

Conclusion

First simulations with a multi-agent model in which actors optimize the time distri-
butions for production, predation and protection yield insight in the rational, non-
institutionalized incentives for engaging in each of these activities. We found the
predation is `robust' in the sense that actors who are best at predating in lostbcases
spend almost all their time on predation. This points to a natural incentive which
theoretically could back Hobbes' state of nature. A second positive result is that pro-
duction time also increases with the increase of the ability to produce, though the
degree of increase varies with other parameters, in particular with the coe�cients for
the other abilities and the percentage of producers in the population. This also indi-
cates a natural incentive, and the variability of increase opens the way for studying
the systematic e�ects of other,'external' parameters on the incentive to produce.

Negatively, we found that protection time in most cases does not monotonically
increase with protection ability. A �rst interpretation is that the ability for protection
is dominated by the two other abilities, and thus does not really an independent
variable. This interpretation is also supported by the intuitive observation that the
abilities for predation and protection in a pre-historic enviroment ar closely related
to similar kinds of bodily skills and strengths.

9Of course, this does not mean that this kind of of �tting is the only kind of validation prodcedure
for the model.
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We were not able with the present model to produce `real life' time distributions
and percentages of producers and predators. This may be have two reasons. First,
the model's basic equation (9) may be too rigid or too restricted. In future research
we will use variations of the model with di�erent exponents and di�erent overall
forms of (9) to �nd `solutions' which reproduce given, plausible time distributions
and percentages. In particular, the absence of predation among predators in (9) has
to be removed.

A second reason for failure may be the neglect of institutional features. Broadly
speaking, institutions seem to produce and to stabilize certain patterns of time dis-
tributions and percentages which do not naturally occur in the institution-free state.
We hypothesize that the present model allows to incorporate some such institutional
features, which we hope to �nd and inclcude in the picture.
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